Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 608(7923): 540-545, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948640

RESUMEN

The sensitivity of forests to near-term warming and associated precipitation shifts remains uncertain1-9. Herein, using a 5-year open-air experiment in southern boreal forest, we show divergent responses to modest climate alteration among juveniles of nine co-occurring North American tree species. Warming alone (+1.6 °C or +3.1 °C above ambient temperature) or combined with reduced rainfall increased the juvenile mortality of all species, especially boreal conifers. Species differed in growth responses to warming, ranging from enhanced growth in Acer rubrum and Acer saccharum to severe growth reductions in Abies balsamea, Picea glauca and Pinus strobus. Moreover, treatment-induced changes in both photosynthesis and growth help explain treatment-driven changes in survival. Treatments in which species experienced conditions warmer or drier than at their range margins resulted in the most adverse impacts on growth and survival. Species abundant in southern boreal forests had the largest reductions in growth and survival due to climate manipulations. By contrast, temperate species that experienced little mortality and substantial growth enhancement in response to warming are rare throughout southern boreal forest and unlikely to rapidly expand their density and distribution. Therefore, projected climate change will probably cause regeneration failure of currently dominant southern boreal species and, coupled with their slow replacement by temperate species, lead to tree regeneration shortfalls with potential adverse impacts on the health, diversity and ecosystem services of regional forests.


Asunto(s)
Calentamiento Global , Taiga , Árboles , Aclimatación , Biodiversidad , Modelos Climáticos , Calentamiento Global/estadística & datos numéricos , Modelos Biológicos , América del Norte , Fotosíntesis , Lluvia , Temperatura , Árboles/clasificación , Árboles/crecimiento & desarrollo
2.
Proc Natl Acad Sci U S A ; 121(13): e2318382121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502702

RESUMEN

The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.


Asunto(s)
Manganeso , Taiga , Carbono , Suelo , Secuestro de Carbono , Bosques
3.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38728227

RESUMEN

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Asunto(s)
Bosques , Nitrógeno , Hojas de la Planta , Árboles , Nitrógeno/metabolismo , Nitrógeno/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Árboles/metabolismo , Carbono/metabolismo , Carbono/química , Ecosistema , Taiga , Ciclo del Carbono
4.
Proc Natl Acad Sci U S A ; 120(34): e2221619120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579148

RESUMEN

The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Cambio Climático , Bosques , Árboles/fisiología , Pinus/microbiología
5.
Nature ; 562(7726): 263-267, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283137

RESUMEN

Climate warming will influence photosynthesis via thermal effects and by altering soil moisture1-11. Both effects may be important for the vast areas of global forests that fluctuate between periods when cool temperatures limit photosynthesis and periods when soil moisture may be limiting to carbon gain4-6,9-11. Here we show that the effects of climate warming flip from positive to negative as southern boreal forests transition from rainy to modestly dry periods during the growing season. In a three-year open-air warming experiment with juveniles of 11 temperate and boreal tree species, an increase of 3.4 °C in temperature increased light-saturated net photosynthesis and leaf diffusive conductance on average on the one-third of days with the wettest soils. In all 11 species, leaf diffusive conductance and, as a result, light-saturated net photosynthesis decreased during dry spells, and did so more sharply in warmed plants than in plants at ambient temperatures. Consequently, across the 11 species, warming reduced light-saturated net photosynthesis on the two-thirds of days with driest soils. Thus, low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.


Asunto(s)
Calentamiento Global , Fotosíntesis , Suelo/química , Árboles/clasificación , Árboles/metabolismo , Agua/análisis , Sequías , Gases/metabolismo , Gases/efectos de la radiación , Humedad , Minnesota , Fotosíntesis/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas/efectos de la radiación , Lluvia , Estaciones del Año , Temperatura , Árboles/efectos de la radiación
6.
Nature ; 553(7687): 194-198, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29227988

RESUMEN

Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.


Asunto(s)
Carbono/análisis , Carbono/metabolismo , Ecosistema , Nitrógeno/análisis , Nitrógeno/metabolismo , Suelo/química , Incendios Forestales/estadística & datos numéricos , Calcio/análisis , Calcio/metabolismo , Carbono/deficiencia , Secuestro de Carbono , Mapeo Geográfico , Pradera , Nitrógeno/deficiencia , Fósforo/análisis , Fósforo/metabolismo , Potasio/análisis , Potasio/metabolismo , Análisis Espacio-Temporal , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875587

RESUMEN

Whether the terrestrial biosphere will continue to act as a net carbon (C) sink in the face of multiple global changes is questionable. A key uncertainty is whether increases in plant C fixation under elevated carbon dioxide (CO2) will translate into decades-long C storage and whether this depends on other concurrently changing factors. We investigated how manipulations of CO2, soil nitrogen (N) supply, and plant species richness influenced total ecosystem (plant + soil to 60 cm) C storage over 19 y in a free-air CO2 enrichment grassland experiment (BioCON) in Minnesota. On average, after 19 y of treatments, increasing species richness from 1 to 4, 9, or 16 enhanced total ecosystem C storage by 22 to 32%, whereas N addition of 4 g N m-2 ⋅ y-1 and elevated CO2 of +180 ppm had only modest effects (increasing C stores by less than 5%). While all treatments increased net primary productivity, only increasing species richness enhanced net primary productivity sufficiently to more than offset enhanced C losses and substantially increase ecosystem C pools. Effects of the three global change treatments were generally additive, and we did not observe any interactions between CO2 and N. Overall, our results call into question whether elevated CO2 will increase the soil C sink in grassland ecosystems, helping to slow climate change, and suggest that losses of biodiversity may influence C storage as much as or more than increasing CO2 or high rates of N deposition in perennial grassland systems.


Asunto(s)
Carbono/metabolismo , Pradera , Nitrógeno/metabolismo , Suelo/química , Biodiversidad , Carbono/análisis , Ciclo del Carbono/fisiología , Dióxido de Carbono/análisis , Clima , Cambio Climático , Ecosistema , Minnesota , Nitrógeno/análisis , Plantas
8.
Ecol Lett ; 26(4): 597-608, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36815289

RESUMEN

The functional response of plant communities to disturbance is hypothesised to be controlled by changes in environmental conditions and evolutionary history of species within the community. However, separating these influences using direct manipulations of repeated disturbances within ecosystems is rare. We evaluated how 41 years of manipulated fire affected plant leaf economics by sampling 89 plant species across a savanna-forest ecotone. Greater fire frequencies created a high-light and low-nitrogen environment, with more diverse communities that contained denser leaves and lower foliar nitrogen content. Strong trait-fire coupling resulted from the combination of significant intraspecific trait-fire correlations being in the same direction as interspecific trait differences arising through the turnover in functional composition along the fire-frequency gradient. Turnover among specific clades helped explain trait-fire trends, but traits were relatively labile. Overall, repeated burning led to reinforcing selective pressures that produced diverse plant communities dominated by conservative resource-use strategies and slow soil nitrogen cycling.


Asunto(s)
Ecosistema , Plantas , Bosques , Nitrógeno , Hojas de la Planta
9.
Ecol Lett ; 26(7): 1237-1246, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37161930

RESUMEN

Fire-vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.


Asunto(s)
Ecosistema , Incendios , Pradera , Árboles/fisiología , Bosques , Clima
10.
Am Nat ; 201(6): E153-E167, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229710

RESUMEN

AbstractThe global rise in anthropogenic reactive nitrogen and the negative impacts of N deposition on terrestrial plant diversity are well documented. The R* theory of resource competition predicts reversible decreases in plant diversity in response to N loading. However, empirical evidence for the reversibility of N-induced biodiversity loss is mixed. In a long-term N-enrichment experiment in Minnesota, a low-diversity state that emerged during N addition has persisted for decades after additions ceased. Hypothesized mechanisms preventing recovery of biodiversity include nutrient recycling, insufficient external seed supply, and litter inhibition of plant growth. Here, we present an ordinary differential equation model that unifies these mechanisms, produces bistability at intermediate N inputs, and qualitatively matches the observed hysteresis at Cedar Creek. Key features of the model, including native species' growth advantage in low-N conditions and limitation by litter accumulation, generalize from Cedar Creek to North American grasslands. Our results suggest that effective biodiversity restoration in these systems may require management beyond reducing N inputs, such as burning, grazing, haying, and seed additions. By coupling resource competition with an additional interspecific inhibitory process, the model also illustrates a general mechanism for bistability and hysteresis that may occur in multiple ecosystem types.


Asunto(s)
Ecosistema , Pradera , Nitrógeno , Biodiversidad , Plantas , Suelo
11.
Mol Ecol ; 32(5): 1133-1148, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516408

RESUMEN

Nutrient exchange forms the basis of the ancient symbiotic relationship that occurs between most land plants and arbuscular mycorrhizal (AM) fungi. Plants provide carbon (C) to AM fungi and fungi provide the plant with nutrients such as nitrogen (N) and phosphorous (P). Nutrient addition can alter this symbiotic coupling in key ways, such as reducing AM fungal root colonization and changing the AM fungal community composition. However, environmental parameters that differentiate ecosystems and drive plant distribution patterns (e.g., pH, moisture), are also known to impact AM fungal communities. Identifying the relative contribution of environmental factors impacting AM fungal distribution patterns is important for predicting biogeochemical cycling patterns and plant-microbe relationships across ecosystems. To evaluate the relative impacts of local environmental conditions and long-term nutrient addition on AM fungal abundance and composition across grasslands, we studied experimental plots amended for 10 years with N, P, or N and P fertilizer in different grassland ecosystem types, including tallgrass prairie, montane, shortgrass prairie, and desert grasslands. Contrary to our hypothesis, we found ecosystem type, not nutrient treatment, was the main driver of AM fungal root colonization, diversity, and community composition, even when accounting for site-specific nutrient limitations. We identified several important environmental drivers of grassland ecosystem AM fungal distribution patterns, including aridity, mean annual temperature, root moisture, and soil pH. This work provides empirical evidence for niche partitioning strategies of AM fungal functional guilds and emphasizes the importance of long-term, large scale research projects to provide ecologically relevant context to nutrient addition studies.


Asunto(s)
Micorrizas , Ecosistema , Pradera , Microbiología del Suelo , Suelo/química , Plantas/microbiología , América del Norte , Raíces de Plantas/microbiología , Hongos/genética
12.
Proc Natl Acad Sci U S A ; 117(52): 33317-33324, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318221

RESUMEN

Whether and how CO2 and nitrogen (N) availability interact to influence carbon (C) cycling processes such as soil respiration remains a question of considerable uncertainty in projecting future C-climate feedbacks, which are strongly influenced by multiple global change drivers, including elevated atmospheric CO2 concentrations (eCO2) and increased N deposition. However, because decades of research on the responses of ecosystems to eCO2 and N enrichment have been done largely independently, their interactive effects on soil respiratory CO2 efflux remain unresolved. Here, we show that in a multifactor free-air CO2 enrichment experiment, BioCON (Biodiversity, CO2, and N deposition) in Minnesota, the positive response of soil respiration to eCO2 gradually strengthened at ambient (low) N supply but not enriched (high) N supply for the 12-y experimental period from 1998 to 2009. In contrast to earlier years, eCO2 stimulated soil respiration twice as much at low than at high N supply from 2006 to 2009. In parallel, microbial C degradation genes were significantly boosted by eCO2 at low but not high N supply. Incorporating those functional genes into a coupled C-N ecosystem model reduced model parameter uncertainty and improved the projections of the effects of different CO2 and N levels on soil respiration. If our observed results generalize to other ecosystems, they imply widely positive effects of eCO2 on soil respiration even in infertile systems.


Asunto(s)
Dióxido de Carbono/farmacología , Pradera , Nitrógeno/farmacología , Suelo/química , Aerobiosis , Simulación por Computador , Microbiología del Suelo
13.
Ecol Monogr ; 92(1): e01488, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35864994

RESUMEN

Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment-which has low overall diversity and productivity despite high variation in each-belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River-where plant diversity and productivity were consistently higher-belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly.

14.
Glob Chang Biol ; 28(5): 1935-1950, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905647

RESUMEN

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2  × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.


Asunto(s)
Ecosistema , Suelo , Carbono , Nitrógeno/análisis , Suelo/química , Microbiología del Suelo
15.
Glob Chang Biol ; 28(16): 4819-4831, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35593000

RESUMEN

Changes in the biosphere carbon (C) sink are of utmost importance given rising atmospheric CO2 levels. Concurrent global changes, such as increasing nitrogen (N) deposition, are affecting how much C can be stored in terrestrial ecosystems. Understanding the extent of these impacts will help in predicting the fate of the biosphere C sink. However, most N addition experiments add N in rates that greatly exceed ambient rates of N deposition, making inference from current knowledge difficult. Here, we leveraged data from a 13-year N addition gradient experiment with addition rates spanning realistic rates of N deposition (0, 1, 5, and 10 g N m-2  year-1 ) to assess the rates of N addition at which C uptake and storage were stimulated in a temperate grassland. Very low rates of N addition stimulated gross primary productivity and plant biomass, but also stimulated ecosystem respiration such that there was no net change in C uptake or storage. Furthermore, we found consistent, nonlinear relationships between N addition rate and plant responses such that intermediate rates of N addition induced the greatest ecosystem responses. Soil pH and microbial biomass and respiration all declined with increasing N addition indicating that negative consequences of N addition have direct effects on belowground processes, which could then affect whole ecosystem C uptake and storage. Our work demonstrates that experiments that add large amounts of N may be underestimating the effect of low to intermediate rates of N deposition on grassland C cycling. Furthermore, we show that plant biomass does not reliably indicate rates of C uptake or soil C storage, and that measuring rates of C loss (i.e., ecosystem and soil respiration) in conjunction with rates of C uptake and C pools are crucial for accurately understanding grassland C storage.


Asunto(s)
Nitrógeno , Suelo , Carbono , Ciclo del Carbono , Ecosistema , Pradera , Nitrógeno/análisis , Plantas
16.
Glob Chang Biol ; 28(8): 2527-2540, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34989058

RESUMEN

Associations between soil minerals and microbially derived organic matter (often referred to as mineral-associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non-rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere-bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non-random colonization of mineral surfaces by hyphae-associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.


Asunto(s)
Hifa , Suelo , Bacterias , Carbono , Minerales , Rizosfera , Suelo/química , Microbiología del Suelo
17.
Glob Chang Biol ; 28(4): 1659-1677, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767298

RESUMEN

Enhancing soil carbon (C) storage has the potential to offset human-caused increases in atmospheric CO2 . Rising CO2 has occurred concurrently with increasing supply rates of biologically limiting nutrients such as nitrogen (N) and phosphorus (P). However, it is unclear how increased supplies of N and P will alter soil C sequestration, particularly in grasslands, which make up nearly a third of non-agricultural land worldwide. Here, we leverage a globally distributed nutrient addition experiment (the Nutrient Network) to examine how a decade of N and P fertilization (alone and in combination) influenced soil C and N stocks at nine grassland sites spanning the continental United States. We measured changes in bulk soil C and N stocks and in three soil C fractions (light and heavy particulate organic matter, and mineral-associated organic matter fractions). Nutrient amendment had variable effects on soil C and N pools that ranged from strongly positive to strongly negative, while soil C and N pool sizes varied by more than an order of magnitude across sites. Piecewise SEM clarified that small increases in plant C inputs with fertilization did not translate to greater soil C storage. Nevertheless, peak season aboveground plant biomass (but not root biomass or production) was strongly positively related to soil C storage at seven of the nine sites, and across all nine sites, soil C covaried with moisture index and soil mineralogy, regardless of fertilization. Overall, we show that site factors such as moisture index, plant productivity, soil texture, and mineralogy were key predictors of cross-site soil C, while nutrient amendment had weaker and site-specific effects on C sequestration. This suggests that prioritizing the protection of highly productive temperate grasslands is critical for reducing future greenhouse gas losses arising from land use change.


Asunto(s)
Carbono , Suelo , Ecosistema , Fertilización , Pradera , Humanos , Nitrógeno/análisis
18.
Ecol Lett ; 24(4): 802-811, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33583093

RESUMEN

Plant litter decomposition is a central process in the carbon (C) cycle and sensitive to ongoing anthropogenic nitrogen (N) fertilisation. Previous syntheses evaluating the effect of N fertilisation on litter decomposition relied largely on models that define a constant rate of mass loss throughout decomposition, which may mask hypothesised shifts in the effect of N fertilisation on litter decomposition dynamics. In this meta-analysis, we compared the performance of four empirical decomposition models and showed that N fertilisation consistently accelerates early-stage but slows late-stage decomposition when the model structure allows for flexibility in decomposition rates through time. Within a particular substrate, early-stage N-stimulation of decomposition was associated with reduced rates of late-stage decay. Because the products of early- vs. late-stage decomposition are stabilised in soils through distinct chemical and physical mechanisms, N-induced changes in the litter decomposition process may influence the formation and cycling of soil C, the largest terrestrial C pool.


Asunto(s)
Nitrógeno , Hojas de la Planta , Carbono , Ecosistema , Fertilización , Suelo
19.
Ecol Lett ; 24(5): 1007-1017, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33694319

RESUMEN

Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2  = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease-fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.


Asunto(s)
Ecosistema , Incendios , Bosques , Pradera , Árboles
20.
New Phytol ; 232(3): 1123-1158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33159479

RESUMEN

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Asunto(s)
Ecosistema , Plantas , Atmósfera , Ecología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA