Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(9): 3271-3283, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567738

RESUMEN

Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.


Asunto(s)
Proteínas Arqueales/metabolismo , Biocatálisis , Flavoproteínas Transportadoras de Electrones/metabolismo , NAD/metabolismo , Pyrobaculum
2.
Nat Chem Biol ; 13(6): 655-659, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28394885

RESUMEN

The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.


Asunto(s)
Electrones , Flavina-Adenina Dinucleótido/análogos & derivados , Flavinas/metabolismo , Modelos Biológicos , Sitios de Unión , Transporte de Electrón , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/química
3.
J Biol Chem ; 292(34): 14039-14049, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28615449

RESUMEN

Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/análogos & derivados , Flavodoxina/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Nitrorreductasas/metabolismo , Oxidorreductasas/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Biocatálisis , Desulfovibrio vulgaris/enzimología , Transporte de Electrón , Enterobacter cloacae/enzimología , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavodoxina/química , Flavodoxina/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Nitrorreductasas/química , Nitrorreductasas/genética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Pyrococcus furiosus/enzimología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mutación Silenciosa , Thermus thermophilus/enzimología , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
4.
Biochemistry ; 56(32): 4177-4190, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28704608

RESUMEN

The biological reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (Em = -320 mV) coupled to reduction of flavodoxin semiquinone (Em = -460 mV) and reduction of coenzyme Q (Em = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.


Asunto(s)
Azotobacter vinelandii/enzimología , Modelos Moleculares , Complejos Multienzimáticos/química , Nitrogenasa/química , Catálisis , Transporte de Electrón/fisiología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Estructura Cuaternaria de Proteína
6.
J Biol Chem ; 289(22): 15203-14, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24706760

RESUMEN

The oxygen-insensitive nitroreductase from Enterobacter cloacae (NR) catalyzes two-electron reduction of nitroaromatics to the corresponding nitroso compounds and, subsequently, to hydroxylamine products. NR has an unusually broad substrate repertoire, which may be related to protein dynamics (flexibility) and/or a simple non-selective kinetic mechanism. To investigate the possible role of mechanism in the broad substrate repertoire of NR, the kinetics of oxidation of NR by para-nitrobenzoic acid (p-NBA) were investigated using stopped-flow techniques at 4 °C. The results revealed a hyperbolic dependence on the p-NBA concentration with a limiting rate of 1.90 ± 0.09 s(-1), indicating one-step binding before the flavin oxidation step. There is no evidence for a distinct binding step in which specificity might be enforced. The reduction of p-NBA is rate-limiting in steady-state turnover (1.7 ± 0.3 s(-1)). The pre-steady-state reduction kinetics of NR by NADH indicate that NADH reduces the enzyme with a rate constant of 700 ± 20 s(-1) and a dissociation constant of 0.51 ± 0.04 mM. Thus, we demonstrate simple transient kinetics in both the reductive and oxidative half-reactions that help to explain the broad substrate repertoire of NR. Finally, we tested the ability of NR to reduce para-hydroxylaminobenzoic acid, demonstrating that the corresponding amine does not accumulate to significant levels even under anaerobic conditions. Thus E. cloacae NR is not a good candidate for enzymatic production of aromatic amines.


Asunto(s)
Enterobacter cloacae/enzimología , Escherichia coli/enzimología , Modelos Químicos , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Aerobiosis , Aminas/metabolismo , Anaerobiosis , Biodegradación Ambiental , Dinitrocresoles/metabolismo , Activación Enzimática/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , NAD/metabolismo , Nitrobenzoatos/metabolismo , Oxidación-Reducción , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA