Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Med ; 21(5): e1004376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723040

RESUMEN

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Asunto(s)
Antimaláricos , Quimioprevención , Resistencia a Medicamentos , Malaria , Humanos , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/prevención & control , Malaria/transmisión , Malaria/epidemiología , Quimioprevención/métodos , Teorema de Bayes , Genotipo , Proyectos de Investigación
2.
BMC Infect Dis ; 24(1): 1028, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327613

RESUMEN

BACKGROUND: The World Health Organization 2022 malaria chemoprevention guidelines recommend providing a full course of antimalarial treatment at pre-defined intervals, regardless of malaria status to prevent illness among children resident in moderate to high perennial malaria transmission settings as perennial malaria chemoprevention (PMC) with sulfadoxine-pyrimethamine (SP). The dhps I431V mutation circulating in West Africa has unknown effect on SP protective efficacy. METHODS: This protocol is for a three-arm, parallel, double-blinded, placebo-controlled, randomised trial in Cameroon among children randomly assigned to one of three directly-observed treatment groups: (i) Group 1 (n = 450) receives daily artesunate (AS) placebo on days - 7 to -1, then active SP plus placebo amodiaquine (AQ) on day 0, and placebo AQ on days 1 and 2; (ii) Group 2 (n = 250) receives placebo AS on days - 7 to -1, then active SP and AQ on day 0, and active AQ on days 1 and 2; and (iii) Group 3 (n = 200) receives active AS on days - 7 to -1, then placebo SP on day 0 and placebo AQ on days 0 to 2. On days 0, 2, 5, 7, and thereafter weekly until day 28, children provide blood for thick smear slides. Dried blood spots are collected on the same days and weekly from day 28 to day 63 for quantitative polymerase chain reaction (qPCR) and genotype analyses. DISCUSSION: Our aim is to quantify the chemopreventive efficacy of SP, and SP plus AQ, and measure the effect of the parasite genotypes associated with SP resistance on parasite clearance and protection from infection when exposed to SP chemoprevention. We will report unblinded results including: (i) time-to-parasite clearance among SP and SP plus AQ recipients who were positive on day 0 by qPCR and followed to day 63; (ii) mean duration of SP and SP plus AQ protection against infection, and (iii) mean duration of symptom-free status among SP and SP plus AQ recipients who were parasite free on day 0 by qPCR. Our study is designed to compare the 28-day follow-up of the new WHO malaria chemoprevention efficacy study protocol with extended follow-up to day 63. TRIAL REGISTRATION: ClinicalTrials.gov NCT06173206; 15/12/2023.


Asunto(s)
Amodiaquina , Antimaláricos , Artesunato , Combinación de Medicamentos , Malaria Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Humanos , Pirimetamina/uso terapéutico , Pirimetamina/administración & dosificación , Camerún , Sulfadoxina/uso terapéutico , Sulfadoxina/administración & dosificación , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Preescolar , Amodiaquina/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Método Doble Ciego , Femenino , Masculino , Artesunato/uso terapéutico , Artemisininas/uso terapéutico , Artemisininas/administración & dosificación , Resultado del Tratamiento , Quimioprevención/métodos
3.
Int J Infect Dis ; 132: 108-117, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37028468

RESUMEN

OBJECTIVES: This study aimed to investigate the evolution of Plasmodium falciparum antimalarial drug resistance markers by comparing the pre- and post-adoption of artemisinin-based combination therapies (ACTs) in Yaounde, Cameroon. METHODS: The molecular characterization of known antimalarial drug resistance markers (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, and Pfk13) in P. falciparum-positive samples collected in 2014 and 2019-2020 was achieved using nested polymerase chain reaction, followed by targeted amplicon deep sequencing on the Illumina MiSeq platform. Data derived were compared with those published during the pre-ACT adoption period from 2004 to 2006. RESULTS: A high prevalence of Pfmdr1 184F, Pfdhfr 51I/59R/108N, and Pfdhps 437G mutant alleles was observed during the post-ACT adoption period. The Pfcrt 76T and Pfmdr1 86Y mutant alleles significantly declined between 2004 and 2020 (P <0.0001). Conversely, the resistance markers to antifolates, Pfdhfr 51I/59R/108N and Pfdhps 437G, significantly increased during the same study period (P <0.0001). We identified nine mutations in the propeller domains of Pfk13; although they were all present in single parasite isolates, none of them are known to confer artemisinin resistance. CONCLUSION: This study documented a near-complete reversion to sensitive parasites for markers conferring resistance to the 4-aminoquinolines and arylamino alcohols in Yaounde. In contrast, the Pfdhfr mutations associated with pyrimethamine resistance are moving toward saturation.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum/genética , Camerún/epidemiología , Sulfadoxina/uso terapéutico , Combinación de Medicamentos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Artemisininas/farmacología , Artemisininas/uso terapéutico , Proteínas Protozoarias/genética
4.
Protist ; 173(5): 125908, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152390

RESUMEN

Endolimax nana is a common endobiont of the human intestine, but members of the genus have also been reported in non-human hosts and in non-intestinal organs. Limited information is available regarding the genetic diversity of Endolimax, which is necessary to delineate species, host specificity and potential differences in clinical impact on the host. Here, we used cloning of PCR products followed by Sanger sequencing and next-generation PacBio Sequencing to obtain Endolimax-related nuclear ribosomal gene sequences and undertook a phylogenetic analysis to gain additional insight into the taxonomy of Endolimax and related organisms. The new sequences confirmed that E. nana forms a discrete clade within the Archamoebae and is related to Endolimax piscium and Iodamoeba. However, we identified substantial sequence divergence within E. nana and evidence for two distinct clades, which we propose to name E. nana ribosomal lineage 1 and E. nana ribosomal lineage 2. Both of the sequencing approaches applied in the study helped us to improve our understanding of genetic diversity across Endolimax, and it is likely that wider application of next-generation sequencing technologies will facilitate the generation of Endolimax-related DNA sequence data and help complete our understanding of its phylogenetic position and intrageneric diversity.


Asunto(s)
Archamoebae , Endolimax , Endolimax/genética , Filogenia , Análisis de Secuencia de ADN , Intestinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA