Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 487(7408): 443-8, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22801498

RESUMEN

Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Axones/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/metabolismo , Oligodendroglía/metabolismo , Simportadores/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Axones/patología , Línea Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Heterocigoto , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Neuronas Motoras/metabolismo , Vaina de Mielina/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Simportadores/deficiencia , Simportadores/genética
2.
Mol Pain ; 10: 8, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24472174

RESUMEN

Voltage-gated potassium (Kv) channels are critical in controlling neuronal excitability and are involved in the induction of neuropathic pain. Therefore, Kv channels might be potential targets for prevention and/or treatment of this disorder. We reported here that a majority of dorsal root ganglion (DRG) neurons were positive for Kv channel alpha subunit Kv1.2. Most of them were large and medium, although there was a variety of sizes. Peripheral nerve injury caused by lumbar (L)5 spinal nerve ligation (SNL) produced a time-dependent reduction in the number of Kv1.2-positive neurons in the ipsilateral L5 DRG, but not in the contralateral L5 DRG. Such reduction was also observed in the ipsilateral L5 DRG on day 7 after sciatic nerve axotomy. Rescuing nerve injury-induced reduction of Kv1.2 in the injured L5 DRG attenuated the development and maintenance of SNL-induced pain hypersensitivity without affecting acute pain and locomotor function. This effect might be attributed to the prevention of SNL-induced upregulation of endogenous Kv1.2 antisense RNA, in addition to the increase in Kv1.2 protein expression, in the injured DRG. Our findings suggest that Kv1.2 may be a novel potential target for preventing and/or treating neuropathic pain.


Asunto(s)
Dolor Agudo/patología , Canal de Potasio Kv.1.2/metabolismo , Neuralgia/patología , Neuronas Aferentes/metabolismo , Dolor Agudo/metabolismo , Dolor Agudo/fisiopatología , Animales , Capsaicina , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Canal de Potasio Kv.1.2/genética , Ligadura , Masculino , Actividad Motora , Neuralgia/metabolismo , Neuralgia/fisiopatología , Neuronas Aferentes/patología , Nocicepción , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Transporte de Proteínas , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Nervios Espinales/metabolismo , Nervios Espinales/patología , Nervios Espinales/fisiopatología , Factores de Tiempo , Transfección , Regulación hacia Arriba
3.
J Neurosci ; 31(15): 5744-54, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490216

RESUMEN

ß-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid-ß peptides that are present in plaques of Alzheimer's disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons, BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked whether axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knock-out and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knock-out mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared with littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ácido Aspártico Endopeptidasas/fisiología , Axones/fisiología , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Sistema Nervioso Periférico/fisiología , Acrilamida/farmacología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Antineoplásicos Fitogénicos/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/genética , Axones/ultraestructura , Biotina/análogos & derivados , Biotina/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/fisiología , Ganglios Espinales/trasplante , Inmunohistoquímica , Bombas de Infusión Implantables , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Microscopía Electrónica , Degeneración Nerviosa/patología , Unión Neuromuscular/fisiología , Paclitaxel/farmacología , Fagocitosis/fisiología , Nervio Ciático/lesiones , Nervio Ciático/trasplante , Degeneración Walleriana/patología
4.
J Neurosci ; 29(10): 3160-71, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19279253

RESUMEN

Diffusion tensor imaging (DTI) and immunohistochemistry were used to examine axon injury in the rat spinal cord after unilateral L(2)-L(4) dorsal root axotomy at multiple time points (from 16 h to 30 d after surgery). Three days after axotomy, DTI revealed a lesion in the ipsilateral dorsal column extending from the lumbar to the cervical cord. The lesion showed significantly reduced parallel diffusivity and increased perpendicular diffusivity at day 3 compared with the contralateral unlesioned dorsal column. These findings coincided with loss of phosphorylated neurofilaments, accumulation of nonphosphorylated neurofilaments, swollen axons and formation of myelin ovoids, and no clear loss of myelin (stained by Luxol fast blue and 2'-3'-cyclic nucleotide 3'-phosphodiesterase). At day 30, DTI of the lesion continued to show significantly decreased parallel diffusivity. There was a slow but significant increase in perpendicular diffusivity between day 3 and day 30, which correlated with gradual clearance of myelin without further significant changes in neurofilament levels. These results show that parallel diffusivity can detect axon degeneration within 3 d after injury. The clearance of myelin at later stages may contribute to the late increase in perpendicular diffusivity, whereas the cause of its early increase at day 3 may be related to changes associated with primary axon injury. These data suggest that there is an early imaging signature associated with axon transections that could be used in a variety of neurological disease processes.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Médula Espinal/patología , Raíces Nerviosas Espinales/patología , Degeneración Walleriana/patología , Animales , Axotomía , Femenino , Degeneración Nerviosa/diagnóstico , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Ratas , Ratas Endogámicas Lew , Médula Espinal/fisiología , Raíces Nerviosas Espinales/fisiología , Factores de Tiempo , Degeneración Walleriana/diagnóstico , Degeneración Walleriana/etiología
5.
Magn Reson Med ; 63(5): 1323-35, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20432303

RESUMEN

Parallel and perpendicular diffusion properties of water in the rat spinal cord were investigated 3 and 30 days after dorsal root axotomy, a specific insult resulting in early axonal degeneration followed by later myelin damage in the dorsal column white matter. Results from q-space analysis (i.e., the diffusion probability density function) obtained with strong diffusion weighting were compared to conventional anisotropy and diffusivity measurements at low b-values, as well as to histology for axon and myelin damage. q-Space contrasts included the height (return to zero displacement probability), full width at half maximum, root mean square displacement, and kurtosis excess of the probability density function, which quantifies the deviation from gaussian diffusion. Following axotomy, a significant increase in perpendicular diffusion (with decreased kurtosis excess) and decrease in parallel diffusion (with increased kurtosis excess) were found in lesions relative to uninjured white matter. Notably, a significant change in abnormal parallel diffusion was detected from 3 to 30 days with full width at half maximum, but not with conventional diffusivity. Also, directional full width at half maximum and root mean square displacement measurements exhibited different sensitivities to white matter damage. When compared to histology, the increase in perpendicular diffusion was not specific to demyelination, whereas combined reduced parallel diffusion and increased perpendicular diffusion was associated with axon damage.


Asunto(s)
Axones/patología , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Vaina de Mielina/patología , Traumatismos de la Médula Espinal/patología , Animales , Axotomía , Femenino , Aumento de la Imagen/métodos , Ratas , Ratas Endogámicas Lew , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Neuron ; 34(6): 895-903, 2002 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12086638

RESUMEN

Myelin inhibitors, including MAG, are major impediments to CNS regeneration. However, CNS axons of DRGs regenerate if the peripheral branch of these neurons is lesioned first. We show that 1 day post-peripheral-lesion, DRG-cAMP levels triple and MAG/myelin no longer inhibit growth, an effect that is PKA dependent. By 1 week post-lesion, DRG-cAMP returns to control, but growth on MAG/myelin improves and is now PKA independent. Inhibiting PKA in vivo blocks the post-lesion growth on MAG/myelin at 1 day and attenuates it at 1 week. Alone, injection of db-cAMP into the DRG mimics completely a conditioning lesion as DRGs grow on MAG/myelin, initially, in a PKA-dependent manner that becomes PKA independent. Importantly, DRG injection of db-cAMP results in extensive regeneration of dorsal column axons lesioned 1 week later. These results may be relevant to developing therapies for spinal cord injury.


Asunto(s)
Axones/fisiología , AMP Cíclico/biosíntesis , Ganglios Espinales/fisiología , Regeneración Nerviosa/fisiología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Bucladesina/farmacología , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
J Neurosci ; 22(15): 6631-8, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12151542

RESUMEN

Motoneurons reinnervate the distal stump at variable rates after peripheral nerve transection and suture. In the rat femoral nerve model, reinnervation is already substantial 3 weeks after repair, but is not completed for an additional 7 weeks. However, this "staggered regeneration" can be temporally compressed by application of 20 Hz electrical stimulation to the nerve for 1 hr. The present experiments explore two possible mechanisms for this stimulation effect: (1) synchronization of distal stump reinnervation and (2) enhancement of regeneration speed. The first possibility was investigated by labeling all motoneurons that have crossed the repair at intervals from 4 d to 4 weeks after rat femoral nerve transection and suture. Although many axons did not cross until 3-4 weeks after routine repair, stimulation significantly increased the number crossing at 4 and 7 d, with only a few crossing after 2 weeks. Regeneration speed was studied by radioisotope labeling of transported proteins and by anterograde labeling of regenerating axons, and was not altered by stimulation. Attempts to condition the neuron by stimulating the femoral nerve 1 week before injury were also without effect. Electrical stimulation thus promotes the onset of motor axon regeneration without increasing its speed. This finding suggests a combined approach to improving the outcome of nerve repair, beginning with stimulation to recruit all motoneurons across the repair, followed by other treatments to speed and prolong axonal elongation.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Nervio Femoral/fisiología , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Nervio Ciático/fisiología , Animales , Axones/fisiología , Axotomía , Femenino , Ligadura , Modelos Animales , Compresión Nerviosa , Ratas , Ratas Sprague-Dawley , Tiempo
8.
Exp Neurol ; 252: 57-62, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316193

RESUMEN

It is generally accepted that there are two populations of macrophages that respond to neural injuries and successful recruitment of hematogenous macrophages has been shown to help the process of nerve repair in the peripheral nervous system (PNS). Meanwhile, the recruitment of circulating macrophages after central nerve system (CNS) injuries is considered mild and delayed. We compared the recruitment of circulating macrophages in the peripheral nerves and spinal cord after dorsal root ganglionectomies, which induce selective and approximately similar extent of sensory fiber degeneration in PNS and CNS, in bone marrow chimeric mice. Our results showed that circulating macrophages were efficiently recruited in PNS but virtually no recruitment in CNS despite degeneration of peripheral and central sensory projections emanating from the same dorsal root ganglion (DRG) neurons. The mechanisms that prevent recruitment of circulating macrophages in CNS after injury remain poorly elucidated.


Asunto(s)
Macrófagos/fisiología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Traumatismos de los Nervios Periféricos/complicaciones , Raíces Nerviosas Espinales/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Trasplante de Médula Ósea/métodos , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Ganglionectomía/métodos , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Traumatismos de los Nervios Periféricos/cirugía , Nervio Ciático/patología
9.
Nat Neurosci ; 16(8): 1024-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23792947

RESUMEN

Neuropathic pain is a refractory disease characterized by maladaptive changes in gene transcription and translation in the sensory pathway. Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the development of neuropathic pain is unclear. Here we identify a conserved lncRNA, named Kcna2 antisense RNA, for a voltage-dependent potassium channel mRNA, Kcna2, in first-order sensory neurons of rat dorsal root ganglion (DRG). Peripheral nerve injury increased Kcna2 antisense RNA expression in injured DRG through activation of myeloid zinc finger protein 1, a transcription factor that binds to the Kcna2 antisense RNA gene promoter. Mimicking this increase downregulated Kcna2, reduced total voltage-gated potassium current, increased excitability in DRG neurons and produced neuropathic pain symptoms. Blocking this increase reversed nerve injury-induced downregulation of DRG Kcna2 and attenuated development and maintenance of neuropathic pain. These findings suggest endogenous Kcna2 antisense RNA as a therapeutic target for the treatment of neuropathic pain.


Asunto(s)
Regulación de la Expresión Génica/genética , Silenciador del Gen , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuralgia/genética , Neuronas Aferentes/fisiología , ARN Largo no Codificante/fisiología , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Vectores Genéticos , Células HEK293 , Humanos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/fisiología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuralgia/fisiopatología , Neuralgia/prevención & control , Traumatismos de los Nervios Periféricos , Regiones Promotoras Genéticas , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Nervios Espinales/lesiones , Transactivadores/biosíntesis , Transactivadores/fisiología
10.
Exp Neurol ; 223(1): 11-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19766119

RESUMEN

Injury of axons in the peripheral nervous system (PNS) induces transcription-dependent changes in gene expression and axonal transport that promote effective regeneration by increasing the intrinsic growth state of axons. Regeneration is enhanced in axons re-injured 1-2 weeks after the intrinsic growth state has been increased by such a prior conditioning lesion (CL). The intrinsic growth state does not increase after axons are injured in the mammalian central nervous system (CNS), where they lack the capacity for effective regeneration. Sensory neurons in the dorsal root ganglion (DRG) have two axonal branches that respond differently to injury. Peripheral branches, which are located entirely in the PNS, are capable of effective regeneration. Central branches regenerate in the PNS (i.e., in the dorsal root, which extends from the DRG to the spinal cord), but not in the CNS (i.e., the spinal cord). A CL of peripheral branches increases the intrinsic growth state of central branches in the dorsal columns of the spinal cord, enabling these axons to undergo lengthy regeneration in a segment of peripheral nerve transplanted into the spinal cord (i.e., a peripheral nerve graft). This regeneration does not occur in the absence of a CL. We will examine how changes in gene expression and axonal transport induced by a CL may promote this regeneration.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Regulación de la Expresión Génica/fisiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Animales , AMP Cíclico/metabolismo , Ganglios Espinales/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Neuronas/patología , Enfermedades del Sistema Nervioso Periférico/patología , Tubulina (Proteína)/metabolismo
11.
Exp Neurol ; 223(1): 60-71, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20080088

RESUMEN

Genetic engineering of mice has become a major tool in understanding the roles of individual molecules in regeneration of nerves, and will play an increasing role in the future. Mice are in many ways well suited to assessment both of nerve regeneration after axotomy and of collateral sprouting of intact fibers into areas of denervation. However, mouse models present special challenges because of their small size, their inherent capacity for regeneration, and the potential strain effects. The most widely used model of regeneration, sciatic nerve injury, has its inherent limitations, and there is a need for other models of injury to long nerves. Measures of regeneration in the mouse can be divided into those that assess the latency to initiate growth, those sensitive to the rate of growth and the proportion of fibers growing at fast rates, those that assess the time to reinnervation of specific targets and the completeness of reinnervation, and those that assess specificity of reinnervation and functional recovery. The short length of nerve available in the mouse limits measures of the rates of outgrowth, and thus introduces a greater potential for "noise" of measurement than is seen in larger animals such as the rat. For both regeneration of interrupted fibers and collateral regeneration from intact fibers histological and physiological measures of "time to target" have the advantages of direct correlation with restoration of function, the ability to assess regeneration of different fiber types efficiently, and the fact that most of these measures are easier in the mouse than in the rat.


Asunto(s)
Regeneración Nerviosa/fisiología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Recuperación de la Función/fisiología , Animales , Modelos Animales de Enfermedad , Regeneración Tisular Dirigida/métodos , Humanos , Locomoción/fisiología , Ratones , Músculo Esquelético/fisiopatología , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Especificidad de la Especie
12.
J Neurochem ; 88(2): 401-10, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14690528

RESUMEN

Biochemical and genetic abnormalities of alpha-synuclein (alpha-Syn) are implicated in the pathogenesis of Parkinson's disease (PD) and other alpha-synucleinopathies. The abnormal intraneuronal accumulations of alpha-Syn in Lewy bodies (LBs) and Lewy neurites (LNs) have implicated defects in axonal transport of alpha-Syn in the alpha-synucleinopathies. Using human (Hu) alpha-Syn transgenic (Tg) mice, we have examined whether familial PD (FPD)-linked mutations (A30P and A53T) alter axonal transport of Hualpha-Syn. Our studies using peripheral nerves show that Hualpha-Syn and Moalpha-Syn are almost exclusively transported in the slow component (SC) of axonal transport and that the FPD-linked alpha-Syn mutations do not have obvious effects on the axonal transport of alpha-Syn. Moreover, older pre-symptomatic A53T Hualpha-Syn Tg mice do not show gross alterations in the axonal transport of alpha-Syn and other proteins in the SC, indicating that the early stages of alpha-synucleinopathy in A53T alpha-Syn Tg mice are not associated with gross alterations in the slow axonal transport. However, the axonal transport of alpha-Syn slows significantly with aging. Because the rate of axonal transport affects the stability and accumulation of proteins in axons, age-dependent-slowing alpha-Syn is a likely contributor to axonal aggregation of alpha-Syn in alpha-synucleinopathy.


Asunto(s)
Envejecimiento/metabolismo , Transporte Axonal/fisiología , Mutación/fisiología , Proteínas del Tejido Nervioso/metabolismo , Trastornos Parkinsonianos/metabolismo , Envejecimiento/genética , Animales , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Trastornos Parkinsonianos/genética , Nervios Periféricos/metabolismo , Sinucleínas , alfa-Sinucleína
13.
Exp Neurol ; 189(2): 293-302, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15380480

RESUMEN

Exposing rat dorsal root ganglion (DRG) neurons to dibutyryl cAMP (db-cAMP) enables central branches to regenerate in the spinal cord by nullifying the ability of CNS myelin to inhibit elongation. A conditioning lesion (CL) promotes similar regeneration of central branches in the spinal cord by increasing neuronal cAMP levels. It is a matter of speculation whether any of the other effects of a CL are triggered by elevated cAMP. We found that like a CL, intraganglionic injection of db-cAMP increases the expression of growth-associated tubulin isotypes. However, unlike a CL, db-cAMP does not increase the velocity at which tubulin is delivered to the tips of growing axons by slow component b (SCb). db-cAMP also fails to increase intrinsic axon growth capacity enough to raise the rate of regeneration of peripheral branches in the sciatic nerve or enable central branches to elongate long distances in an environment free of all CNS inhibitors of elongation (i.e., a peripheral nerve graft transplanted into the spinal cord at the site of dorsal column transection). Thus, the increase in cAMP induced by a CL induces some, but not all, of the changes that may be necessary to increase intrinsic axon growth capacity.


Asunto(s)
Bucladesina/farmacología , Ganglios Espinales/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Tubulina (Proteína)/metabolismo , Animales , Transporte Axonal/efectos de los fármacos , Transporte Axonal/fisiología , Ganglios Espinales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Conos de Crecimiento/metabolismo , Inhibidores de Crecimiento/metabolismo , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Nervios Periféricos/citología , Nervios Periféricos/fisiología , Nervios Periféricos/trasplante , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Tejidos/fisiología , Regulación hacia Arriba/fisiología
14.
Exp Neurol ; 186(2): 124-33, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15026251

RESUMEN

The optic nerve is a CNS pathway containing molecules capable of inhibiting axon elongation. The growth program in embryonic retinal ganglion cell (RGC) neurons enables axons to regenerate in the optic nerve through at least two mechanisms. Namely, high cyclic AMP (cAMP) levels abrogate the ability of CNS molecules to inhibit elongation, and the pattern of gene expression enables axons to undergo rapid, sustained, and lengthy elongation. In adult mammals, recovery of visual function after optic nerve injury is limited by both the death of most RGC neurons and the inability of surviving axons to regenerate. We now report that a single intraocular injection of the membrane-permeable cAMP analogue dibutyryl cAMP (db cAMP) promotes the regeneration of RGC axons in the optic nerves of adult rats, but does not prevent the death of RGC neurons. This regeneration in optic nerves crushed within the orbit (2 mm from the eye) was equally effective either 1 day before or 1 day after db cAMP injection. The number of regenerating axons, which was maximal 14 days after crush, declined with increasing time after injury (i.e., 28, 56, and 112 days) and distance beyond the crush site (i.e., 0.25, 0.5, and 1.0 mm). Thus, db cAMP promotes optic nerve regeneration without increasing the survival of axotomized RGC neurons. Furthermore, since db cAMP does not enable axons to undergo rapid, sustained, and lengthy elongation, strategies that increase survival and promote these changes in elongation may critically complement the ability of db cAMP to promote regeneration.


Asunto(s)
Axones/efectos de los fármacos , Bucladesina/farmacología , Regeneración Nerviosa/efectos de los fármacos , Nervio Óptico/efectos de los fármacos , Animales , Recuento de Células/métodos , Supervivencia Celular/efectos de los fármacos , Toxina del Cólera/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Colorantes Fluorescentes/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Compresión Nerviosa/métodos , Nervio Óptico/citología , Órbita/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo , Estilbamidinas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA