RESUMEN
PURPOSE: To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS: The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS: Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS: The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Aceleración , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
PURPOSE: To test an integrated "AC/DC" array approach at 7T, where B0 inhomogeneity poses an obstacle for functional imaging, diffusion-weighted MRI, MR spectroscopy, and other applications. METHODS: A close-fitting 7T 31-channel (31-ch) brain array was constructed and tested using combined Rx and ΔB0 shim channels driven by a set of rapidly switchable current amplifiers. The coil was compared to a shape-matched 31-ch reference receive-only array for RF safety, signal-to-noise ratio (SNR), and inter-element noise correlation. We characterize the coil array's ability to provide global and dynamic (slice-optimized) shimming using ΔB0 field maps and echo planar imaging (EPI) acquisitions. RESULTS: The SNR and average noise correlation were similar to the 31-ch reference array. Global and slice-optimized shimming provide 11% and 40% improvements respectively compared to baseline second-order spherical harmonic shimming. Birdcage transmit coil efficiency was similar for the reference and AC/DC array setups. CONCLUSION: Adding ΔB0 shim capability to a 31-ch 7T receive array can significantly boost 7T brain B0 homogeneity without sacrificing the array's rdiofrequency performance, potentially improving ultra-high field neuroimaging applications that are vulnerable to off-resonance effects.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Fantasmas de Imagen , Ondas de Radio , Relación Señal-RuidoRESUMEN
The purpose of this study was to investigate the feasibility of two-dimensional (2D) navigated, interleaved multishot echo-planar imaging (EPI) to enhance kidney diffusion-weighted imaging (DWI) in rats at 7.0 T. Fully sampled interleaved four-shot EPI with 2D navigators was tailored for kidney DWI (Sprague-Dawley rats, n = 7) on a 7.0-T small bore preclinical scanner. The image quality of four-shot EPI was compared with T2 -weighted rapid acquisition with relaxation enhancement (RARE) (reference) and single-shot EPI (ss-EPI) without and with parallel imaging (PI). The contrast-to-noise ratio (CNR) was examined to assess the image quality for the EPI approaches. The Dice similarity coefficient and the Hausdorff distance were used for evaluation of image distortion. Mean diffusivity (MD) and fractional anisotropy (FA) were calculated for renal cortex and medulla for all DWI approaches. The corticomedullary difference of MD and FA were assessed by Wilcoxon signed-rank test. Four-shot EPI showed the highest CNR among the three EPI variants and lowest geometric distortion versus T2 -weighted RARE (mean Dice: 0.77 for ss-EPI without PI, 0.88 for ss-EPI with twofold undersampling, and 0.92 for four-shot EPI). The FA map derived from four-shot EPI clearly identified a highly anisotropic region corresponding to the inner stripe of the outer medulla. Four-shot EPI successfully discerned differences in both MD and FA between renal cortex and medulla. In conclusion, 2D navigated, interleaved multishot EPI facilitates high-quality rat kidney DWI with clearly depicted intralayer and interlayer structure and substantially reduced image distortion. This approach enables the anatomic integrity of DWI-MRI in small rodents and has the potential to benefit the characterization of renal microstructure in preclinical studies.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratas , Ratas Sprague-DawleyRESUMEN
PURPOSE: To develop a time-division multiplexing echo-planar imaging (TDM-EPI) sequence for approximately two- to threefold acceleration when acquiring joint relaxation-diffusion MRI data with multiple TEs. METHODS: The proposed TDM-EPI sequence interleaves excitation and data collection for up to 3 separate slices at different TEs and uses echo-shifting gradients to disentangle the overlapping echo signals during the readout period. By properly arranging the sequence event blocks for each slice and adjusting the echo-shifting gradients, diffusion-weighted images from separate slices can be acquired. Therefore, we present 2 variants of the sequence. A single-TE TDM-EPI is presented to demonstrate the concept. Next, a multi-TE TDM-EPI is presented to highlight the advantages of the TDM approach for relaxation-diffusion imaging. These sequences were evaluated on a 3 Tesla scanner with a water phantom and in vivo human brain data. RESULTS: The single-TE TDM-EPI sequence can simultaneously acquire 2 slices with a maximum b value of 3000 s/mm2 and 2.5 mm isotropic resolution using interleaved readout windows with TE ≈ 78 ms. With the same b value and resolution, the multi-TE TDM-EPI sequence can simultaneously acquire 2 or 3 separate slices using interleaved readout sections with shortest TE ≈ 70 ms and ΔTE ≈ 30 ms. Phantom and in vivo experiments have shown that the proposed TDM-EPI sequences can provide similar image quality and diffusion measures as conventional EPI readouts with multiple echoes but can reduce the overall relaxation-diffusion protocol scan time by approximately two- to threefold. CONCLUSION: TDM-EPI is a novel approach to acquire diffusion imaging data at multiple TEs. This enables a significant reduction in acquisition time for relaxation-diffusion MRI experiments but without compromising image quality and diffusion measurements, thus removing a significant barrier to the adoption of relaxation-diffusion MRI in clinical research studies of neurological and mental disorders.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Encéfalo/diagnóstico por imagen , Difusión , Humanos , Fantasmas de ImagenRESUMEN
PURPOSE: We propose and evaluate a new structured low-rank method for echo-planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC-LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data. METHODS: Autocalibrated LORAKS is a previous structured low-rank method for EPI ghost correction that uses GRAPPA-type autocalibration data to enable high-quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC-LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low-rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi-contrast joint reconstruction framework. RAC-LORAKS is evaluated using simulations and in vivo data, including comparisons to state-of-the-art methods. RESULTS: RAC-LORAKS is demonstrated to have good ghost elimination performance compared to state-of-the-art methods in several complicated EPI acquisition scenarios (including gradient-echo brain imaging, diffusion-encoded brain imaging, and cardiac imaging). CONCLUSIONS: RAC-LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.
Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Fantasmas de ImagenRESUMEN
PURPOSE: To develop a method for slice-wise dynamic distortion correction for EPI using rapid spatiotemporal B0 field measurements from FID navigators (FIDnavs) and to evaluate the efficacy of this new approach relative to an established data-driven technique. METHODS: A low-resolution reference image was used to create a forward model of FIDnav signal changes to enable estimation of spatiotemporal B0 inhomogeneity variations up to second order from measured FIDnavs. Five volunteers were scanned at 3 T using a 64-channel coil with FID-navigated EPI. The accuracy of voxel shift measurements and geometric distortion correction was assessed for experimentally induced magnetic field perturbations. The temporal SNR was evaluated in EPI time-series acquired at rest and with a continuous nose-touching action, before and after image realignment. RESULTS: Field inhomogeneity coefficients and voxel shift maps measured using FIDnavs were in excellent agreement with multi-echo EPI measurements. The FID-navigated distortion correction accurately corrected image geometry in the presence of induced magnetic field perturbations, outperforming the data-driven approach in regions with large field offsets. In functional MRI scans with nose touching, FIDnav-based correction yielded temporal SNR gains of 30% in gray matter. Following image realignment, which accounted for global image shifts, temporal SNR gains of 3% were achieved. CONCLUSIONS: Our proposed application of FIDnavs enables slice-wise dynamic distortion correction with high temporal efficiency. We achieved improved signal stability by leveraging the encoding information from multichannel coils. This approach can be easily adapted to other EPI-based sequences to improve temporal SNR for a variety of clinical and research applications.
Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Obesity has one of the highest refractory rates of all chronic diseases, in part because weight loss induced by calorie restriction, the first-line treatment for obesity, elicits biological adaptations that promote weight regain. Although acute feeding trials suggest a role for macronutrient composition in modifying brain activity related to hunger and satiety, relevance of these findings to weight-loss maintenance has not been studied. OBJECTIVES: We investigated effects of weight-loss maintenance diets varying in macronutrient content on regional cerebral blood flow (rCBF) in brain regions involved in hunger and reward. METHODS: In conjunction with a randomized controlled feeding trial, we investigated the effects of weight-loss maintenance diets varying in carbohydrate content [high, 60% of total energy: n = 20; 6 men/14 women; mean age: 32.5 y; mean BMI (in kg/m 2): 27.4; moderate, 40% of total energy: n = 22; 10 men/12 women; mean age: 32.5 y; mean BMI: 29.0; low, 20% of total energy: n = 28; 12 men/16 women; mean age: 33.2 y; mean BMI: 27.7] on rCBF in brain regions involved in hunger and reward preprandial and 4 h postprandial after 14-20 wk on the diets. The primary outcome was rCBF in the nucleus accumbens (NAcc) at 4 h postprandial; the secondary outcome was preprandial rCBF in the hypothalamus. RESULTS: Consistent with a priori hypothesis, at 4 h postprandial, NAcc rCBF was 43% higher in adults assigned to the high- compared with low-carbohydrate diet {P[family-wise error (FWE)-corrected] < 0.05}. Preprandial hypothalamus rCBF was 41% higher on high-carbohydrate diet [P(FWE-corrected) < 0.001]. Exploratory analyses revealed that elevated rCBF on high-carbohydrate diet was not specific to prandial state: preprandial NAcc rCBF [P(FWE-corrected) < 0.001] and 4 h postprandial rCBF in hypothalamus [P(FWE-corrected) < 0.001]. Insulin secretion predicted differential postprandial activation of the NAcc by diet. CONCLUSIONS: We report significant differences in rCBF in adults assigned to diets varying in carbohydrate content for several months, which appear to be partially associated with insulin secretion. These findings suggest that chronic intake of a high-carbohydrate diet may affect brain reward and homeostatic activity in ways that could impede weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT02300857.
Asunto(s)
Dieta Baja en Carbohidratos , Pérdida de Peso , Adulto , Carbohidratos de la Dieta , Ingestión de Energía , Femenino , Humanos , Hipotálamo , Masculino , RecompensaRESUMEN
PURPOSE: Quantitative parameter maps, as opposed to qualitative grayscale images, may represent the future of diagnostic MRI. A new quantitative MRI method is introduced here that requires a single 3D acquisition, allowing good spatial coverage to be achieved in relatively short scan times. METHODS: A multipathway multi-echo sequence was developed, and at least 3 pathways with 2 TEs were needed to generate T1 , T2 , T2* , B1+ , and B0 maps. The method required the central k-space region to be sampled twice, with the same sequence but with 2 very different nominal flip angle settings. Consequently, scan time was only slightly longer than that of a single scan. The multipathway multi-echo data were reconstructed into parameter maps, for phantom as well as brain acquisitions, in 5 healthy volunteers at 3 T. Spatial resolution, matrix size, and FOV were 1.2 × 1.0 × 1.2 mm3 , 160 × 192 × 160, and 19.2 × 19.2 × 19.2 cm3 (whole brain), acquired in 11.5 minutes with minimal acceleration. Validation was performed against T1 , T2 , and T2* maps calculated from gradient-echo and spin-echo data. RESULTS: In Bland-Altman plots, bias and limits of agreement for T1 and T2 results in vivo and in phantom were -2.9/±125.5 ms (T1 in vivo), -4.8/±20.8 ms (T2 in vivo), -1.5/±18.1 ms (T1 in phantom), and -5.3/±7.4 ms (T2 in phantom), for regions of interest including given brain structures or phantom compartments. Due to relatively high noise levels, the current implementation of the approach may prove more useful for region of interest-based as opposed to pixel-based interpretation. CONCLUSIONS: We proposed a novel approach to quantitatively map MR parameters based on a multipathway multi-echo acquisition.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Adulto , Algoritmos , Mapeo Encefálico , Simulación por Computador , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Modelos Estadísticos , Fantasmas de Imagen , Adulto JovenRESUMEN
PURPOSE: A ghost correction strategy for Simultaneous Multi-Slice (SMS) EPI methods that provides improved ghosting artifact reduction compared to conventional methods is presented. Conventional Nyquist ghost correction methods for SMS-EPI rely on navigator data that contain phase errors from all slices in the simultaneously acquired slice-group. These navigator data may contain spatially nonlinear phase differences near regions of B0 inhomogeneity, which violates the linear model employed by most EPI ghost correction algorithms, resulting in poor reconstructions. METHODS: Dual-Polarity GRAPPA (DPG) was previously shown to accurately model and correct both spatially nonlinear and 2D phase errors in conventional single-slice EPI data. Here, an extension we call Dual-Polarity slice-GRAPPA (DPsG) is adapted to the slice-GRAPPA method and applied to SMS-EPI data for slice separation and ghost correction concurrently-eliminating the need for a separate ghost correction step while also providing improved slice-specific EPI phase error correction. RESULTS: Images from in vivo SMS-EPI data reconstructed using DPsG in place of conventional Nyquist ghost correction and slice-GRAPPA are presented. DPsG is shown to reduce ghosting artifacts and provide improved temporal SNR compared to the conventional reconstruction. CONCLUSION: The proposed use of DPsG for SMS-EPI reconstruction can provide images with lower artifact levels, higher image fidelity, and improved time-series stability compared to conventional reconstruction methods.
Asunto(s)
Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Humanos , Modelos Lineales , Dinámicas no Lineales , Procesamiento de Señales Asistido por Computador , Relación Señal-RuidoRESUMEN
PURPOSE: To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore. METHODS: A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second. In one particular implementation, volunteers were taken out of the MRI bore with the ultrasound sensor still in place, and MR images were generated on the basis of ultrasound signal and learned correlations alone in a "scannerless" manner. RESULTS: Hybrid ultrasound-MRI data were acquired in eight separate imaging sessions. Locations of liver features, in synthetic images, were compared with those from acquired images: The mean error was 1.0 pixel (2.1 mm), with best case 0.4 and worst case 4.1 pixels (in the presence of heavy coughing). For results from outside the bore, qualitative validation involved optically tracked ultrasound imaging with/without coughing. CONCLUSION: The proposed setup can generate an accurate stream of high-speed MR images, up to 100 frames per second, inside or even outside the MR bore. Magn Reson Med 78:897-908, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Ultrasonografía/métodos , Algoritmos , Diseño de Equipo , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Hígado/diagnóstico por imagen , Aprendizaje Automático , Movimiento/fisiología , TransductoresRESUMEN
PURPOSE: The purpose of this study was to seek improved image quality from accelerated echo planar imaging (EPI) data, particularly at ultrahigh fields. Certain artifacts in EPI reconstructions can be attributed to nonlinear phase differences between data acquired using frequency-encoding gradients of alternating polarity. These errors appear near regions of local susceptibility gradients and typically cannot be corrected with conventional Nyquist ghost correction (NGC) methods. METHODS: We propose a new reconstruction method that integrates ghost correction into the parallel imaging data recovery process. This is achieved through a pair of generalized autocalibrating partially parallel acquisitions (GRAPPA) kernels that operate directly on the measured EPI data. The proposed dual-polarity GRAPPA (DPG) method estimates missing k-space data while simultaneously correcting inherent EPI phase errors. RESULTS: Simulation results showed that standard NGC is incapable of correcting higher-order phase errors, whereas the DPG kernel approach successfully removed these errors. The presence of higher-order phase errors near regions of local susceptibility gradients was demonstrated with in vivo data. DPG reconstructions of in vivo 3T and 7T EPI data acquired near these regions showed a marked improvement over conventional methods. CONCLUSION: This new parallel imaging method for reconstructing accelerated EPI data shows better resilience to inherent EPI phase errors, resulting in higher image quality in regions where higher-order EPI phase errors commonly occur. Magn Reson Med 76:32-44, 2016. © 2015 Wiley Periodicals, Inc.
Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Señales Asistido por Computador , Humanos , Almacenamiento y Recuperación de la Información/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
PURPOSE: To describe how B0 inhomogeneities can cause errors in proton resonance frequency (PRF) shift thermometry, and to correct for these errors. METHODS: With PRF thermometry, measured phase shifts are converted into temperature measurements through the use of a scaling factor proportional to the echo time, TE. However, B0 inhomogeneities can deform, spread, and translate MR echoes, potentially making the "true" echo time vary spatially within the imaged object and take on values that differ from the prescribed TE value. Acquisition and reconstruction methods able to avoid or correct for such errors are presented. RESULTS: Tests were performed in a gel phantom during sonication, and temperature measurements were made with proper shimming as well as with intentionally introduced B0 inhomogeneities. Errors caused by B0 inhomogeneities were observed, described, and corrected by the proposed methods. No statistical difference was found between the corrected results and the reference results obtained with proper shimming, while errors by more than 10% in temperature elevation were corrected for. The approach was also applied to an abdominal in vivo dataset. CONCLUSION: Field variations induce errors in measured field values, which can be detected and corrected. The approach was validated for a PRF thermometry application.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Termografía/métodos , Abdomen/anatomía & histología , Voluntarios Sanos , Humanos , Hipertermia Inducida , Fantasmas de Imagen , Protones , Terapia por UltrasonidoRESUMEN
The desire to understand complex mental processes using functional MRI drives development of imaging techniques that scan the whole human brain at a high spatial and temporal resolution. In this work, an accelerated multishot three-dimensional echo-planar imaging sequence is proposed to increase the temporal resolution of these studies. A combination of two modern acceleration techniques, UNFOLD and GRAPPA is used in the secondary phase encoding direction to reduce the scan time effectively. The sequence (repetition time of 1.02 s) was compared with standard two-dimensional echo-planar imaging (3 s) and multishot three-dimensional echo-planar imaging (3 s) sequences with both block design and event-related functional MRI paradigms. With the same experimental setup and imaging time, the temporal resolution improvement with our sequence yields similar activation regions in the block design functional MRI paradigm with slightly increased t-scores. Moreover, additional information on the timing of rapid dynamic changes was extracted from accelerated images for the case of the event related complex mental paradigm.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Encéfalo/fisiología , Imagen Eco-Planar/métodos , Potenciales Evocados/fisiología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de SustracciónRESUMEN
The characterization of the distribution of noise in the magnitude MR image is a very important problem within image processing algorithms. The Rician noise assumed in single-coil acquisitions has been the keystone for signal-to-noise ratio estimation, image filtering, or diffusion tensor estimation for years. With the advent of parallel protocols such as sensitivity encoding or Generalized Autocalibrated Partially Parallel Acquisitions that allow accelerated acquisitions, this noise model no longer holds. Since Generalized Autocalibrated Partially Parallel Acquisitions reconstructions yield the combination of the squared signals recovered at each receiving coil, noncentral Chi statistics have been previously proposed to model the distribution of noise. However, we prove in this article that this is a weak model due to several artifacts in the acquisition scheme, mainly the correlation existing between the signals obtained at each coil. Alternatively, we propose to model such correlations with a reduction in the number of degrees of freedom of the signal, which translates in an equivalent nonaccelerated system with a minor number of independent receiving coils and, consequently, a lower signal-to-noise ratio. With this model, a noncentral Chi distribution can be assumed for all pixels in the image, whose effective number of coils and effective variance of noise can be explicitly computed in a closed form from the Generalized Autocalibrated Partially Parallel Acquisitions interpolation coefficients. Extensive experiments over both synthetic and in vivo data sets have been performed to show the goodness of fit of out model.
Asunto(s)
Encéfalo/anatomía & histología , Interpretación Estadística de Datos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Modelos Estadísticos , Algoritmos , Simulación por Computador , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use.
Asunto(s)
Circulación Cerebrovascular , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados , Marcadores de SpinRESUMEN
We present a whole-brain in vivo diffusion MRI (dMRI) dataset acquired at 760 µm isotropic resolution and sampled at 1260 q-space points across 9 two-hour sessions on a single healthy participant. The creation of this benchmark dataset is possible through the synergistic use of advanced acquisition hardware and software including the high-gradient-strength Connectom scanner, a custom-built 64-channel phased-array coil, a personalized motion-robust head stabilizer, a recently developed SNR-efficient dMRI acquisition method, and parallel imaging reconstruction with advanced ghost reduction algorithm. With its unprecedented resolution, SNR and image quality, we envision that this dataset will have a broad range of investigational, educational, and clinical applications that will advance the understanding of human brain structures and connectivity. This comprehensive dataset can also be used as a test bed for new modeling, sub-sampling strategies, denoising and processing algorithms, potentially providing a common testing platform for further development of in vivo high resolution dMRI techniques. Whole brain anatomical T1-weighted and T2-weighted images at submillimeter scale along with field maps are also made available.
Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/ultraestructura , Conectoma , Imagen de Difusión por Resonancia Magnética , HumanosRESUMEN
Nyquist ghosts are an inherent artifact in echo planar imaging acquisitions. An approach to robustly eliminate Nyquist ghosts is presented that integrates two previous Nyquist ghost correction techniques: temporal domain encoding (phase labeling for additional coordinate encoding: PLACE and spatial domain encoding (phased array ghost elimination: PAGE). Temporal encoding modulates the echo planar imaging acquisition trajectory from frame to frame, enabling one to interleave data to remove inconsistencies that occur between sampling on positive and negative gradient readouts. With PLACE, one can coherently combine the interleaved data to cancel residual Nyquist ghosts. If the level of ghosting varies significantly from image to image, however, the signal cancellation that occurs with PLACE can adversely affect SNR-sensitive applications such as perfusion imaging with arterial spin labeling. This work proposes integrating PLACE into a PAGE-based reconstruction process to yield significantly better Nyquist ghost correction that is more robust than PLACE or PAGE alone. The robustness of this method is demonstrated in the presence of magnetic field drift with an in-vivo arterial spin labeling perfusion experiment.
Asunto(s)
Artefactos , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo/patología , Humanos , Aumento de la Imagen/métodos , Fantasmas de Imagen , Procesamiento de Señales Asistido por ComputadorRESUMEN
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.
Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Water diffusion in nerve fibers is strongly influenced by axon architecture. In this study, fractional diffusion anisotropy and transverse and longitudinal diffusion coefficients were measured in excised human cervical spinal cord with MR line-scan diffusion imaging, at 625 microm in-plane resolution and 3 mm slice thickness. A pixel-based comparison of fractional diffusion anisotropy, transverse diffusion coefficient, and longitudinal diffusion coefficient data with axon packing parameters derived from corresponding stained histological sections was performed for four slices. The axon packing parameters, axon density, axon area-fraction, and average axon size for entire specimen cross-sections were calculated by computerized segmentation of optical microscopy data obtained at 0.53 microm resolution. Salient features could be recognized on fractional diffusion anisotropy, transverse diffusion coefficient, axon density, axon area fraction, and average axon size maps. For white matter regions only, the average correlation coefficients for fractional diffusion anisotropy compared to histology-based parameters axon density and axon area fraction were 0.37 and 0.21, respectively. For transverse diffusion coefficient compared to axon density and axon area fraction, they were -0.40 and -0.36, and for longitudinal diffusion coefficient compared to axon density and axon area fraction, -0.14 and -0.30. All average correlation coefficients for average axon size were low. Correlation coefficients for collectively analyzed white and gray matter regions were significantly higher than correlation coefficients derived from analysis of white matter regions only.
Asunto(s)
Axones/química , Vértebras Cervicales , Médula Espinal/diagnóstico por imagen , Adulto , Algoritmos , Anisotropía , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Variaciones Dependientes del Observador , Técnicas de Cultivo de Órganos , Radiografía , Médula Espinal/anatomía & histologíaRESUMEN
BACKGROUND AND PURPOSE: Geometric distortions resulting from large pose changes reduce the accuracy of motion measurements and interfere with the ability to generate artifact-free information. Our goal is to develop an algorithm and pulse sequence to enable motion-compensated, geometric distortion compensated diffusion-weighted MRI, and to evaluate its efficacy in correcting for the field inhomogeneity and position changes, induced by large and frequent head motions. METHODS: Dual echo planar imaging (EPI) with a blip-reversed phase encoding distortion correction technique was evaluated in five volunteers in two separate experiments and compared with static field map distortion correction. In the first experiment, dual-echo EPI images were acquired in two head positions designed to induce a large field inhomogeneity change. A field map and a distortion-free structural image were acquired at each position to assess the ability of dual-echo EPI to generate reliable field maps and enable geometric distortion correction in both positions. In the second experiment, volunteers were asked to move to multiple random positions during a diffusion scan. Images were reconstructed using the dual-echo correction and a slice-to-volume registration (SVR) registration algorithm. The accuracy of SVR motion estimates was compared to externally measured ground truth motion parameters. RESULTS: Our results show that dual-echo EPI can produce slice-level field maps with comparable quality to field maps generated by the reference gold standard method. We also show that slice-level distortion correction improves the accuracy of SVR algorithms as slices acquired at different orientations have different levels of distortion, which can create errors in the registration process. CONCLUSIONS: Dual-echo acquisitions with blip-reversed phase encoding can be used to generate slice-level distortion-free images, which is critical for motion-robust slice to volume registration. The distortion corrected images not only result in better motion estimates, but they also enable a more accurate final diffusion image reconstruction.