Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557639

RESUMEN

BACKGROUND: H56:IC31 is a candidate vaccine against tuberculosis (TB) with the potential to reduce TB recurrence rate. It is thus important for future clinical trials to demonstrate safety and immunogenicity of H56:IC31 in individuals treated for TB. METHODS: 22 adults confirmed to be Mtb negative (by 2 GeneXpert tests or 2 sputum cultures) after four-five months of TB treatment, and not more than 28 days after completion of TB treatment, were randomized to receive two doses of H56:IC31 (5 mg H56:500 nmol IC31; N=16) or placebo (N=6) 56 days apart. Participants were followed for 420 days for safety and immunogenicity. RESULTS: H56:IC31 vaccination was associated with an acceptable safety profile, consisting mostly of mild self-limited injection site reactions. No serious adverse events, and no vaccine-related severe adverse events, were reported. H56:IC31 induced a CD4+ T-cell response for Ag85B and ESAT-6, with ESAT-6 being immunodominant, which persisted through six months after the last vaccination. There was some evidence of CD8+ T-cell responses for both Ag85B and ESAT-6, but to a lesser extent than CD4+ responses. CONCLUSIONS: H56:IC31 was associated with an acceptable safety profile, and induced a predominant CD4+ T-cell response, in adults recently treated for drug-susceptible, uncomplicated pulmonary TB. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02375698.

2.
N Engl J Med ; 379(2): 138-149, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29996082

RESUMEN

BACKGROUND: Recent Mycobacterium tuberculosis infection confers a predisposition to the development of tuberculosis disease, the leading killer among global infectious diseases. H4:IC31, a candidate subunit vaccine, has shown protection against tuberculosis disease in preclinical models, and observational studies have indicated that primary bacille Calmette-Guérin (BCG) vaccination may offer partial protection against infection. METHODS: In this phase 2 trial, we randomly assigned 990 adolescents in a high-risk setting who had undergone neonatal BCG vaccination to receive the H4:IC31 vaccine, BCG revaccination, or placebo. All the participants had negative results on testing for M. tuberculosis infection on the QuantiFERON-TB Gold In-tube assay (QFT) and for the human immunodeficiency virus. The primary outcomes were safety and acquisition of M. tuberculosis infection, as defined by initial conversion on QFT that was performed every 6 months during a 2-year period. Secondary outcomes were immunogenicity and sustained QFT conversion to a positive test without reversion to negative status at 3 months and 6 months after conversion. Estimates of vaccine efficacy are based on hazard ratios from Cox regression models and compare each vaccine with placebo. RESULTS: Both the BCG and H4:IC31 vaccines were immunogenic. QFT conversion occurred in 44 of 308 participants (14.3%) in the H4:IC31 group and in 41 of 312 participants (13.1%) in the BCG group, as compared with 49 of 310 participants (15.8%) in the placebo group; the rate of sustained conversion was 8.1% in the H4:IC31 group and 6.7% in the BCG group, as compared with 11.6% in the placebo group. Neither the H4:IC31 vaccine nor the BCG vaccine prevented initial QFT conversion, with efficacy point estimates of 9.4% (P=0.63) and 20.1% (P=0.29), respectively. However, the BCG vaccine reduced the rate of sustained QFT conversion, with an efficacy of 45.4% (P=0.03); the efficacy of the H4:IC31 vaccine was 30.5% (P=0.16). There were no clinically significant between-group differences in the rates of serious adverse events, although mild-to-moderate injection-site reactions were more common with BCG revaccination. CONCLUSIONS: In this trial, the rate of sustained QFT conversion, which may reflect sustained M. tuberculosis infection, was reduced by vaccination in a high-transmission setting. This finding may inform clinical development of new vaccine candidates. (Funded by Aeras and others; C-040-404 ClinicalTrials.gov number, NCT02075203 .).


Asunto(s)
Vacuna BCG , Inmunización Secundaria , Mycobacterium tuberculosis/inmunología , Seroconversión , Vacunas contra la Tuberculosis , Tuberculosis/prevención & control , Adolescente , Anticuerpos Antibacterianos/sangre , Vacuna BCG/efectos adversos , Vacuna BCG/inmunología , Niño , Femenino , Humanos , Masculino , Modelos de Riesgos Proporcionales , Tuberculosis/diagnóstico , Tuberculosis/transmisión , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología
3.
J Transl Med ; 18(1): 358, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32957995

RESUMEN

COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal-human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/veterinaria , Pandemias/veterinaria , Neumonía Viral/veterinaria , Zoonosis/transmisión , Crianza de Animales Domésticos , Animales , Betacoronavirus/clasificación , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , Gatos , Coronavirus/clasificación , Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Perros , Genoma Viral , Humanos , Visón/virología , Países Bajos/epidemiología , Exposición Profesional , Mascotas/virología , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Investigación Biomédica Traslacional , Zoonosis/epidemiología
4.
Am J Respir Crit Care Med ; 199(2): 220-231, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30092143

RESUMEN

RATIONALE: Global tuberculosis (TB) control requires effective vaccines in TB-endemic countries, where most adults are infected with Mycobacterium tuberculosis (M.tb). OBJECTIVES: We sought to define optimal dose and schedule of H56:IC31, an experimental TB vaccine comprising Ag85B, ESAT-6, and Rv2660c, for M.tb-infected and M.tb-uninfected adults. METHODS: We enrolled 98 healthy, HIV-uninfected, bacillus Calmette-Guérin-vaccinated, South African adults. M.tb infection was defined by QuantiFERON-TB (QFT) assay. QFT-negative participants received two vaccinations of different concentrations of H56 in 500 nmol of IC31 to enable dose selection for further vaccine development. Subsequently, QFT-positive and QFT-negative participants were randomized to receive two or three vaccinations to compare potential schedules. Participants were followed for safety and immunogenicity for 292 days. MEASUREMENTS AND MAIN RESULTS: H56:IC31 showed acceptable reactogenicity profiles irrespective of dose, number of vaccinations, or M.tb infection. No vaccine-related severe or serious adverse events were observed. The three H56 concentrations tested induced equivalent frequencies and functional profiles of antigen-specific CD4 T cells. ESAT-6 was only immunogenic in QFT-negative participants who received three vaccinations. CONCLUSIONS: Two or three H56:IC31 vaccinations at the lowest dose induced durable antigen-specific CD4 T-cell responses with acceptable safety and tolerability profiles in M.tb-infected and M.tb-uninfected adults. Additional studies should validate applicability of vaccine doses and regimens to both QFT-positive and QFT-negative individuals. Clinical trial registered with www.clinicaltrials.gov (NCT01865487).


Asunto(s)
Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis/prevención & control , Aciltransferasas/inmunología , Aciltransferasas/uso terapéutico , Adolescente , Adulto , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/uso terapéutico , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/uso terapéutico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/inmunología , Oligodesoxirribonucleótidos/uso terapéutico , Oligopéptidos/inmunología , Oligopéptidos/uso terapéutico , Sudáfrica , Resultado del Tratamiento , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Adulto Joven
5.
Am J Respir Crit Care Med ; 195(9): 1171-1180, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060545

RESUMEN

RATIONALE: Administration of tuberculosis (TB) vaccines in participants with previous or current pulmonary TB may have the potential for causing harmful postvaccination immunologic (Koch-type) reactions. OBJECTIVES: To assess the safety and immunogenicity of three dose levels of the AERAS-402 live, replication-deficient adenovirus 35-vectored TB candidate vaccine, containing three mycobacterial antigens, in individuals with current or previous pulmonary TB. METHODS: We performed a phase II randomized, placebo-controlled, double-blinded dose-escalation study in an HIV-negative adult South African cohort (n = 72) with active pulmonary TB (on treatment for 1-4 mo) or pulmonary TB treated at least 12 months before study entry and considered cured. Safety endpoints included clinical assessment, flow volume curves, diffusing capacity of the lung for carbon monoxide, pulse oximetry, chest radiograph, and high-resolution thoracic computerized tomography scans. Cytokine expression by CD4 and CD8 T cells, after stimulation with Ag85A, Ag85B, and TB10.4 peptide pools, was examined by intracellular cytokine staining. MEASUREMENTS AND MAIN RESULTS: No apparent temporal or dose-related changes in clinical status (specifically acute, Koch phenomenon-like reactions), lung function, or radiology attributable to vaccine were observed. Injection site reactions were mild or moderate. Hematuria (by dipstick only) occurred in 25 (41%) of 61 AERAS-402 recipients and 3 (27%) of 11 placebo recipients, although no gross hematuria was reported. AERAS-402 induced robust CD8+ and moderate CD4+ T-cell responses, mainly to Ag85B in both vaccine groups. CONCLUSIONS: Administration of the AERAS-402 candidate TB vaccine to participants with current or previous pulmonary TB induced a robust immune response and is not associated with clinically significant pulmonary complications. Clinical trial registered with www.clinicaltrials.gov (NCT 02414828) and in the South African National Clinical Trials Register ( www.sanctr.gov.za DOH 27-0808-2060).


Asunto(s)
Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis Pulmonar/terapia , Adenoviridae , Adulto , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Pulmón/diagnóstico por imagen , Mediciones del Volumen Pulmonar , Masculino , Persona de Mediana Edad , Oximetría , Radiografía Torácica , Tomografía Computarizada por Rayos X , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/diagnóstico por imagen , Tuberculosis Pulmonar/inmunología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/uso terapéutico , Vacunas de ADN , Vacunas Sintéticas , Adulto Joven
6.
BMC Infect Dis ; 16: 412, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519524

RESUMEN

BACKGROUND: In the absence of a validated animal model and/or an immune correlate which predict vaccine-mediated protection, large-scale clinical trials are currently the only option to prove efficacy of new tuberculosis candidate vaccines. Tools to facilitate testing of new tuberculosis (TB) vaccines are therefore urgently needed. METHODS: We present here an optimized ex vivo mycobacterial growth inhibition assay (MGIA) using a murine Mycobacterium tuberculosis infection model. This assay assesses the combined ability of host immune cells to inhibit mycobacterial growth in response to vaccination. C57BL/6 mice were immunized with Bacillus Calmette-Guérin (BCG) and growth inhibition of mycobacteria by splenocytes was assessed. Mice were also challenged with Mycobacterium tuberculosis Erdman, and bacterial burden was assessed in lungs and spleen. RESULTS: Using the growth inhibition assay, we find a reduction in BCG CFU of 0.3-0.8 log10 after co-culture with murine splenocytes from BCG vaccinated versus naïve C57BL/6 mice. BCG vaccination in our hands led to a reduction in bacterial burden after challenge with Mycobacterium tuberculosis of approx. 0.7 log10 CFU in lung and approx. 1 log10 CFU in spleen. This effect was also seen when using Mycobacterium smegmatis as the target of growth inhibition. An increase in mycobacterial numbers was found when splenocytes from interferon gamma-deficient mice were used, compared to wild type controls, indicating that immune mechanisms may also be investigated using this assay. CONCLUSIONS: We believe that the ex vivo mycobacterial growth inhibition assay could be a useful tool to help assess vaccine efficacy in future, alongside other established methods. It could also be a valuable tool for determination of underlying immune mechanisms.


Asunto(s)
Vacuna BCG/inmunología , Recuento de Colonia Microbiana/métodos , Vacunas contra la Tuberculosis/farmacología , Tuberculosis/prevención & control , Animales , Vacuna BCG/farmacología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mycobacterium bovis/inmunología , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/inmunología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Bazo/citología , Bazo/inmunología , Bazo/microbiología , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunación
7.
J Immunol ; 193(4): 1799-811, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25024382

RESUMEN

Development of a vaccine against pulmonary tuberculosis may require immunization strategies that induce a high frequency of Ag-specific CD4 and CD8 T cells in the lung. The nonhuman primate model is essential for testing such approaches because it has predictive value for how vaccines elicit responses in humans. In this study, we used an aerosol vaccination strategy to administer AERAS-402, a replication-defective recombinant adenovirus (rAd) type 35 expressing Mycobacterium tuberculosis Ags Ag85A, Ag85B, and TB10.4, in bacillus Calmette-Guérin (BCG)-primed or unprimed rhesus macaques. Immunization with BCG generated low purified protein derivative-specific CD4 T cell responses in blood and bronchoalveolar lavage. In contrast, aerosolized AERAS-402 alone or following BCG induced potent and stable Ag85A/b-specific CD4 and CD8 effector T cells in bronchoalveolar lavage that largely produced IFN-γ, as well as TNF and IL-2. Such responses induced by BCG, AERAS-402, or both failed to confer overall protection following challenge with 275 CFUs M. tuberculosis Erdman, although vaccine-induced responses associated with reduced pathology were observed in some animals. Anamnestic T cell responses to Ag85A/b were not detected in blood of immunized animals after challenge. Overall, our data suggest that a high M. tuberculosis challenge dose may be a critical factor in limiting vaccine efficacy in this model. However, the ability of aerosol rAd immunization to generate potent cellular immunity in the lung suggests that using different or more immunogens, alternative rAd serotypes with enhanced immunogenicity, and a physiological challenge dose may achieve protection against M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Vacunación/métodos , Vacunas Sintéticas/inmunología , Aciltransferasas/inmunología , Administración por Inhalación , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular , Interferón gamma/biosíntesis , Interleucina-2/biosíntesis , Pulmón/inmunología , Pulmón/microbiología , Macaca mulatta , Masculino , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/virología , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis Pulmonar/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Vacunas de ADN , Vacunas Sintéticas/administración & dosificación
8.
Front Immunol ; 12: 673532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177914

RESUMEN

Despite the widespread use of BCG, tuberculosis (TB) remains a global threat. Existing vaccine candidates in clinical trials are designed to replace or boost BCG which does not provide satisfying long-term protection. AERAS-402 is a replication-deficient Ad35 vaccine encoding a fusion protein of the M. tuberculosis (Mtb) antigens 85A, 85B, and TB10.4. The present phase I trial assessed the safety and immunogenicity of AERAS-402 in participants living in India - a highly TB-endemic area. Healthy male participants aged 18-45 years with a negative QuantiFERON-TB Gold in-tube test (QFT) were recruited. Enrolled participants (n=12) were randomized 2:1 to receive two intramuscular injections of either AERAS-402 (3 x 1010 viral particles [vp]); (n=8) or placebo (n=4) on study days 0 and 28. Safety and immunogenicity parameters were evaluated for up to 182 days post the second injection. Immunogenicity was assessed by a flow cytometry-based intracellular cytokine staining (ICS) assay and transcriptional profiling. The latter was examined using dual-color-Reverse-Transcriptase-Multiplex-Ligation-dependent-Probe-Amplification (dc-RT MLPA) assay. AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine-induced CD8+ T-cell responses were dominated by cells co-expressing IFN-γ, TNF-α, and IL-2 ("polyfunctional" cells) and were more robust than CD4+ T-cell responses. Five genes (CXCL10, GNLY, IFI35, IL1B and PTPRCv2) were differentially expressed between the AERAS-402-group and the placebo group, suggesting vaccine-induced responses. Further, compared to pre-vaccination, three genes (CLEC7A, PTPRCv1 and TAGAP) were consistently up-regulated following two doses of vaccination in the AERAS-402-group. No safety concerns were observed for AERAS-402 in healthy Indian adult males. The vaccine-induced predominantly polyfunctional CD8+ T cells in response to Ag85B, humoral immunity, and altered gene expression profiles in peripheral blood mononuclear cells (PBMCs) indicative of activation of various immunologically relevant biological pathways.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunización Secundaria/métodos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Adolescente , Adulto , Vacuna BCG/inmunología , Método Doble Ciego , Humanos , India , Masculino , Persona de Mediana Edad , Vacunas de ADN , Adulto Joven
9.
Cytometry A ; 77(3): 275-84, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20104580

RESUMEN

The capacity for robust proliferation upon re-infection is a hallmark of adaptive immunity and the basis of vaccination. A widely used animal model for the study of human disease is the rhesus macaque (RM), where capacity for proliferation can be assessed ex vivo using carboxyfluorescein succinimidyl ester (CFSE)-based dilution assays. However, we show over the course of the standard ex vivo proliferation assay that CFSE-labeling at commonly used dye concentrations induces significant cell death, but that this phenomenon is dose-dependent. Here, we describe an alternative semiquantitative method for estimating T cell proliferative responses that avoids the putative biases associated with chemical modification. RM peripheral blood mononuclear cells were stimulated ex vivo with cognate peptides for 5 days, immunostained for intracellular Ki-67, and then analyzed by flow cytometry. We describe a gating strategy using Ki-67 and side light scatter, also a marker of blastogenesis, which correlates strongly with data from CFSE dilution. We show that this method is a valid tool for measuring RM antigen-specific cellular proliferation ex vivo and can be used as an alternative to CFSE dilution assays.


Asunto(s)
Citometría de Flujo/métodos , Antígeno Ki-67/biosíntesis , Linfocitos T/citología , Animales , Antígenos/química , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Colorantes/farmacología , Relación Dosis-Respuesta a Droga , Fluoresceínas/química , Eliminación de Gen , Leucocitos Mononucleares/citología , Macaca mulatta , Succinimidas/química , Linfocitos T/microbiología
10.
Proc Natl Acad Sci U S A ; 104(47): 18648-53, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18000037

RESUMEN

The cell-mediated immune profile induced by a recombinant DNA vaccine was assessed in the simian/HIV (SHIV) and macaque model. The vaccine strategy included coimmunization of a DNA-based vaccine alone or in combination with an optimized plasmid encoding macaque IL-15 (pmacIL-15). We observed strong induction of vaccine-specific IFN-gamma-producing CD8(+) and CD4(+) effector T cells in the vaccination groups. Animals were subsequently challenged with 89.6p. The vaccine groups were protected from ongoing infection, and the IL-15 covaccinated group showed a more rapidly controlled infection than the group treated with DNA vaccine alone. Lymphocytes isolated from the group covaccinated with pmacIL-15 had higher cellular proliferative responses than lymphocytes isolated from the macaques that received SHIV DNA alone. Vaccine antigen activation of lymphocytes was also studied for a series of immunological molecules. Although mRNA for IFN-gamma was up-regulated after antigen stimulation, the inflammatory molecules IL-8 and MMP-9 were down-regulated. These observed immune profiles are potentially reflective of the ability of the different groups to control SHIV replication. This study demonstrates that an optimized IL-15 immune adjuvant delivered with a DNA vaccine can impact the cellular immune profile in nonhuman primates and lead to enhanced suppression of viral replication.


Asunto(s)
Inmunización , Interleucina-15/inmunología , Macaca/inmunología , Plásmidos/genética , Proteínas de los Retroviridae/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Proliferación Celular , Regulación de la Expresión Génica , Productos del Gen gag/inmunología , Humanos , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-15/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/clasificación , Linfocitos T/citología , Linfocitos T/inmunología , Replicación Viral
11.
Commun Biol ; 3(1): 563, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037320

RESUMEN

We characterize the breadth, function and phenotype of innate and adaptive cellular responses in a prevention of Mycobacterium tuberculosis infection trial. Responses are measured by whole blood intracellular cytokine staining at baseline and 70 days after vaccination with H4:IC31 (subunit vaccine containing Ag85B and TB10.4), Bacille Calmette-Guerin (BCG, a live attenuated vaccine) or placebo (n = ~30 per group). H4:IC31 vaccination induces Ag85B and TB10.4-specific CD4 T cells, and an unexpected NKTlike subset, that expresses IFN-γ, TNF and/or IL-2. BCG revaccination increases frequencies of CD4 T cell subsets that either express Th1 cytokines or IL-22, and modestly increases IFNγ-producing NK cells. In vitro BCG re-stimulation also triggers responses by donor-unrestricted T cells, which may contribute to host responses against mycobacteria. BCG, which demonstrated efficacy against sustained Mycobacterium tuberculosis infection, modulates multiple immune cell subsets, in particular conventional Th1 and Th22 cells, which should be investigated in discovery studies of correlates of protection.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Adolescente , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Niño , Citocinas/metabolismo , Humanos , Interferón gamma/metabolismo , Mycobacterium tuberculosis/inmunología , Células T Asesinas Naturales/inmunología , Células TH1/inmunología , Tuberculosis Pulmonar/inmunología
13.
PLoS One ; 14(5): e0217091, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31120957

RESUMEN

BACKGROUND: DAR-901 is an inactivated whole cell tuberculosis booster vaccine, prepared using a new scalable, broth-grown method from the master cell bank of SRL172, a vaccine previously shown to prevent tuberculosis. This study examined whether DAR-901 (a) induces CD4+ T cell cytokine profiles previously proposed as correlates of protection and (b) has a specific vaccine-induced immunological signature compared to BCG or placebo. METHODS: We analysed CD4+ T cell cytokine immune responses from 10 DAR-901 recipients, 9 BCG recipients and 9 placebo recipients from the Phase I DAR-901 MDES trial. In that study, HIV-negative, IGRA-negative participants with prior BCG immunization were randomized (double-blind) to receive three intradermal injections of DAR-901 or saline placebo or two injections of saline placebo followed by an intradermal injection of BCG. Antigen-specific functional and phenotypic CD4+ T cell responses along with effector phenotype of responder cells were measured by intracellular cytokine staining. RESULTS: DAR-901 recipients exhibited increased DAR-901 antigen-specific polyfunctional or bifunctional T cell responses compared to baseline. Vaccine specific CD4+ IFNγ, IL2, TNFα and any cytokine responses peaked at 7 days post-dose 3. Th1 responses predominated, with most responder cells exhibiting a polyfunctional effector memory phenotype. BCG induced greater CD4+ T cell responses than placebo while the more modest DAR-901 responses did not differ from placebo. Neither DAR-901 nor BCG induced substantial or sustained Th17 /Th22 cytokine responses. CONCLUSION: DAR-901, a TB booster vaccine grown from the master cell bank of SRL 172 which was shown to prevent TB, induced low magnitude polyfunctional effector memory CD4+ T cell responses. DAR-901 responses were lower than those induced by BCG, a vaccine that has been shown ineffective as a booster to prevent tuberculosis disease. These results suggest that induction of higher levels of CD4+ cytokine stimulation may not be a critical or pre-requisite characteristic for candidate TB vaccine boosters. TRIAL REGISTRATION: ClinicalTrials.gov NCT02063555.


Asunto(s)
Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Adolescente , Adulto , Anciano , Vacuna BCG/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/metabolismo , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/normas , Adulto Joven
14.
NPJ Vaccines ; 3: 34, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210819

RESUMEN

Tuberculosis (TB) is the leading cause of infectious death worldwide. Development of improved TB vaccines that boost or replace BCG is a major global health goal. ID93 + GLA-SE is a fusion protein TB vaccine candidate combined with the Toll-like Receptor 4 agonist adjuvant, GLA-SE. We conducted a phase 1, randomized, double-blind, dose-escalation clinical trial to evaluate two dose levels of the ID93 antigen, administered intramuscularly alone or in combination with two dose levels of the GLA-SE adjuvant, in 60 BCG-naive, QuantiFERON-negative, healthy adults in the US (ClinicalTrials.gov identifier: NCT01599897). When administered as 3 injections, 28 days apart, all dose levels of ID93 alone and ID93 + GLA-SE demonstrated an acceptable safety profile. All regimens elicited vaccine-specific humoral and cellular responses. Compared with ID93 alone, vaccination with ID93 + GLA-SE elicited higher titers of ID93-specific antibodies, a preferential increase in IgG1 and IgG3 subclasses, and a multifaceted Fc-mediated effector function response. The addition of GLA-SE also enhanced the magnitude and polyfunctional cytokine profile of CD4+ T cells. The data demonstrate an acceptable safety profile and indicate that the GLA-SE adjuvant drives a functional humoral and T-helper 1 type cellular response.

15.
Cancer Res ; 65(21): 10059-67, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16267032

RESUMEN

Dendritic cells are professional antigen-presenting cells capable of inducing and regulating innate and antigen-specific immune responses. Therapeutic cancer vaccines using ex vivo engineered or in vivo targeted dendritic cells are being evaluated in clinical trials. T-helper type-1 (Th1)-skewed immune responses are characterized by the preferential induction of antigen-specific IFN-gamma-secreting CD4+ T cells and correlate with effector mechanisms important for tumor and viral immunity. Methods to "polarize" human monocyte-derived dendritic cells for the preferential induction of Th1-skewed immune responses have been developed, and polarized dendritic cells (DC1s) are being evaluated in preclinical and clinical studies. Here, we show that stimulation of bone marrow-derived murine dendritic cell populations with poly(I:C) and CpGs results in phenotypic maturation of dendritic cells and synergistic induction of durable, high-level IL-12p70 secretion characteristic of human type-1 polarized dendritic cells. Functionally, these dendritic cells induce antigen-specific Th1-type CD4+ T-cell activation in vitro and in vivo. Dendritic cell maturation and polarization are not inhibited by the presence of live B16 melanoma tumor cells, and tumor-loaded DC1s induce delayed-type hypersensitivity responses in vivo. DC1s loaded with B16 melanoma cells and injected into tumor-bearing mice induce Th1-skewed tumor-specific CD4+ T cells and a significant reduction in tumor growth. Tumor infiltrates in DC1-immunized animals are characterized by the presence of CD4+ T cells and activated macrophages. These results show a murine model of DC1 function and suggest an important role for CD4+ T cells and macrophages in DC1-induced antitumor immune responses. They have implications for the future development of DC1-based immunotherapies and strategies for clinical immune monitoring of their effectiveness.


Asunto(s)
Células Dendríticas/inmunología , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/inmunología , Células TH1/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Humanos , Interleucina-12/inmunología , Interleucina-12/metabolismo , Activación de Linfocitos/inmunología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Ovalbúmina/inmunología , Poli I-C/inmunología , Poli I-C/farmacología , Subunidades de Proteína/inmunología , Subunidades de Proteína/metabolismo
16.
PLoS One ; 12(5): e0175215, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28498853

RESUMEN

BACKGROUND: Development of a tuberculosis vaccine to boost BCG is a major international health priority. SRL172, an inactivated whole cell booster derived from a non-tuberculous mycobacterium, is the only new vaccine against tuberculosis to have demonstrated efficacy in a Phase 3 trial. In the present study we sought to determine if a three-dose series of DAR-901 manufactured from the SRL172 master cell bank by a new, scalable method was safe and immunogenic. METHODS: We performed a single site, randomized, double-blind, controlled, Phase 1 dose escalation trial of DAR-901 at Dartmouth-Hitchcock Medical Center in the United States. Healthy adult subjects age 18-65 with prior BCG immunization and a negative interferon-gamma release assay (IGRA) were enrolled in cohorts of 16 subjects and randomized to three injections of DAR-901 (n = 10 per cohort), or saline placebo (n = 3 per cohort), or two injections of saline followed by an injection of BCG (n = 3 per cohort; 1-8 x 106 CFU). Three successive cohorts were enrolled representing DAR-901 at 0.1, 0.3, and 1 mg per dose. Randomization was performed centrally and treatments were masked from staff and volunteers. Subsequent open label cohorts of HIV-negative/IGRA-positive subjects (n = 5) and HIV-positive subjects (n = 6) received three doses of 1 mg DAR-901. All subjects received three immunizations at 0, 2 and 4 months administered as 0.1 mL injections over the deltoid muscle alternating between right and left arms. The primary outcomes were safety and immunogenicity. Subjects were followed for 6 months after dose 3 for safety and had phlebotomy performed for safety studies and immune assays before and after each injection. Immune assays using peripheral blood mononuclear cells included cell-mediated IFN-γ responses to DAR-901 lysate and to Mycobacterium tuberculosis (MTB) lysate; serum antibody to M. tuberculosis lipoarabinomannan was assayed by ELISA. RESULTS: DAR-901 had an acceptable safety profile and was well-tolerated at all dose levels in all treated subjects. No serious adverse events were reported. Median (range) 7-day erythema and induration at the injection site for 1 mg DAR-901 were 10 (4-20) mm and 10 (4-16) mm, respectively, and for BCG, 30 (10-107) mm and 38 (15-55) mm, respectively. Three mild AEs, all headaches, were considered possibly related to DAR-901. No laboratory or vital signs abnormalities were related to immunization. Compared to pre-vaccination responses, three 1 mg doses of DAR-901 induced statistically significant increases in IFN-γ response to DAR-901 lysate and MTB lysate, and in antibody responses to M. tuberculosis lipoarabinomannan. Ten subjects who received 1 mg DAR-901 remained IFN-γ release assay (IGRA) negative after three doses of vaccine. CONCLUSIONS: A three-injection series of DAR-901 was well-tolerated, had an acceptable safety profile, and induced cellular and humoral immune responses to mycobacterial antigens. DAR-901 is advancing to efficacy trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT02063555.


Asunto(s)
Vacuna BCG/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Adolescente , Adulto , Anciano , Anticuerpos Antibacterianos/inmunología , Vacuna BCG/efectos adversos , Método Doble Ciego , Eritema/inmunología , Femenino , Humanos , Ensayos de Liberación de Interferón gamma , Masculino , Persona de Mediana Edad , Mycobacterium bovis/inmunología , Vacunas contra la Tuberculosis/normas , Adulto Joven
17.
Vaccine ; 35(12): 1652-1661, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28216183

RESUMEN

BACKGROUND: Novel vaccine strategies are required to provide protective immunity in tuberculosis (TB) and prevent development of active disease. We investigated the safety and immunogenicity of a novel TB vaccine candidate, H4:IC31 (AERAS-404) that is composed of a fusion protein of M. tuberculosis antigens Ag85B and TB10.4 combined with an IC31® adjuvant. METHODS: BCG-vaccinated healthy subjects were immunized with various antigen (5, 15, 50, 150µg) and adjuvant (0, 100, 500nmol) doses of the H4:IC31 vaccine (n=106) or placebo (n=18) in two randomized, double-blind, placebo-controlled phase I studies conducted in a low TB endemic setting in Sweden and Finland. The subjects were followed for adverse events and CD4+ T cell responses. RESULTS: H4:IC31 vaccination was well tolerated with a safety profile consisting of mostly mild to moderate self-limited injection site pain, myalgia, arthralgia, fever and post-vaccination inflammatory reaction at the screening tuberculin skin test injection site. The H4:IC31 vaccine elicited antigen-specific CD4+ T cell proliferation and cytokine production that persisted 18weeks after the last vaccination. CD4+ T cell expansion, IFN-γ production and multifunctional CD4+ Th1 responses were most prominent after two doses of H4:IC31 containing 5, 15, or 50µg of H4 in combination with the 500nmol IC31 adjuvant dose. CONCLUSIONS: The novel TB vaccine candidate, H4:IC31, demonstrated an acceptable safety profile and was immunogenic, capable of triggering multifunctional CD4+ T cell responses in previously BCG-vaccinated healthy individuals. These dose-escalation trials provided evidence that the optimal antigen-adjuvant dose combinations are 5, 15, or 50µg of H4 and 500nmol of IC31. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02066428 and NCT02074956.


Asunto(s)
Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Aciltransferasas/administración & dosificación , Aciltransferasas/efectos adversos , Aciltransferasas/inmunología , Adulto , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/efectos adversos , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/efectos adversos , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Método Doble Ciego , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Finlandia , Voluntarios Sanos , Humanos , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/efectos adversos , Oligopéptidos/administración & dosificación , Oligopéptidos/efectos adversos , Placebos/administración & dosificación , Suecia , Resultado del Tratamiento , Vacunas contra la Tuberculosis/administración & dosificación
18.
Clin Vaccine Immunol ; 24(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28701467

RESUMEN

The development of a functional biomarker assay in the tuberculosis (TB) field would be widely recognized as a major advance in efforts to develop and to test novel TB vaccine candidates efficiently. We present preliminary studies using mycobacterial growth inhibition assays (MGIAs) to detect Mycobacterium bovis BCG vaccine responses across species, and we extend this work to determine whether a standardized MGIA can be applied in characterizing new TB vaccines. The comparative MGIA studies reviewed here aimed to evaluate robustness, reproducibility, and ability to reflect in vivo responses. In doing so, they have laid the foundation for the development of a MGIA that can be standardized and potentially qualified. A major challenge ahead lies in better understanding the relationships between in vivo protection, in vitro growth inhibition, and the immune mechanisms involved. The final outcome would be a MGIA that could be used with confidence in TB vaccine trials. We summarize data arising from this project, present a strategy to meet the goals of developing a functional assay for TB vaccine testing, and describe some of the challenges encountered in performing and transferring such assays.


Asunto(s)
Vacuna BCG/inmunología , Recuento de Colonia Microbiana/métodos , Mycobacterium tuberculosis/crecimiento & desarrollo , Vacunas contra la Tuberculosis/inmunología , Animales , Humanos , Lactante , Colaboración Intersectorial , Mycobacterium tuberculosis/inmunología , Reproducibilidad de los Resultados , Sudáfrica , Especificidad de la Especie , Tuberculosis/sangre , Tuberculosis/inmunología , Tuberculosis/microbiología , Vacunas contra la Tuberculosis/administración & dosificación
19.
Sci Rep ; 6: 36355, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805026

RESUMEN

The development of a vaccine for Mycobacterium tuberculosis (Mtb) has been impeded by the absence of correlates of protective immunity. One correlate would be the ability of cells induced by vaccination to recognize the Mtb-infected cell. AERAS-402 is a replication-deficient serotype 35 adenovirus containing DNA expressing a fusion protein of Mtb antigens 85A, 85B and TB10.4. We undertook a phase I double-blind, randomized placebo controlled trial of vaccination with AERAS-402 following BCG. Analysis of the vaccine-induced immune response revealed strong antigen-specific polyfunctional CD4+ and CD8+ T cell responses. However, analysis of the vaccine-induced CD8+ T cells revealed that in many instances these cells did not recognize the Mtb-infected cell. Our findings highlight the measurement of vaccine-induced, polyfunctional T cells may not reflect the extent or degree to which these cells are capable of identifying the Mtb-infected cell and correspondingly, the value of detailed experimental medicine studies early in vaccine development.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Vacunas contra la Tuberculosis/inmunología , Vacunación , Vacunas de ADN , Adulto Joven
20.
EBioMedicine ; 7: 278-86, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27322481

RESUMEN

BACKGROUND: We report a first-in-human trial evaluating safety and immunogenicity of a recombinant BCG, AERAS-422, over-expressing TB antigens Ag85A, Ag85B, and Rv3407 and expressing mutant perfringolysin. METHODS: This was a randomized, double-blind, dose-escalation trial in HIV-negative, healthy adult, BCG-naïve volunteers, negative for prior exposure to Mtb, at one US clinical site. Volunteers were randomized 2:1 at each dose level to receive a single intradermal dose of AERAS-422 (>10(5)-<10(6)CFU=low dose, ≥10(6)-<10(7)CFU=high dose) or non-recombinant Tice BCG (1-8×10(5)CFU). Randomization used an independently prepared randomly generated sequence of treatment assignments. The primary and secondary outcomes were safety and immunogenicity, respectively, assessed in all participants through 182days post-vaccination. ClinicalTrials.gov registration number: NCT01340820. FINDINGS: Between Nov 2010 and Aug 2011, 24 volunteers were enrolled (AERAS-422 high dose, n=8; AERAS-422 low dose, n=8; Tice BCG, n=8); all were included in the safety and immunogenicity analyses. All 24 subjects had at least one adverse event, primarily expected local reactions. High dose AERAS-422 vaccination induced Ag85A- and Ag85B-specific lymphoproliferative responses and marked anti-mycobacterial activity in a whole blood bactericidal activity culture assay (WBA), but was associated with varicella zoster virus (VZV) reactivation in two vaccinees. These volunteers displayed high BCG-specific IFN-γ responses pre- and post-vaccination possibly predisposing them to autocrine/paracrine negative regulation of immune control of latent VZV. A systems biology transcriptomal approach identified positive correlations between post-vaccination T cell expression modules and WBA, and negative correlations between post-vaccination monocyte expression modules and WBA. The expression of one key macrophage marker (F4/80) was constitutively elevated in the two volunteers with zoster. INTERPRETATION: The unexpected development of VZV in two of eight healthy adult vaccine recipients resulted in discontinuation of AERAS-422 vaccine development. Immunological and transcriptomal data identified correlations with the development of TB immunity and VZV that require further investigation. FUNDING: Aeras, FDA, Bill and Melinda Gates Foundation.


Asunto(s)
Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Herpesvirus Humano 3/fisiología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Aciltransferasas/inmunología , Aciltransferasas/metabolismo , Adulto , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Vacuna BCG/efectos adversos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/metabolismo , Humanos , Masculino , Vacunas Sintéticas/efectos adversos , Activación Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA