Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(5): e1010252, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622870

RESUMEN

SteD is a transmembrane effector of the Salmonella SPI-2 type III secretion system that inhibits T cell activation by reducing the amounts of at least three proteins -major histocompatibility complex II (MHCII), CD86 and CD97 -from the surface of antigen-presenting cells. SteD specifically localises at the trans-Golgi network (TGN) and MHCII compartments; however, the targeting, membrane integration and trafficking of SteD are not understood. Using systematic mutagenesis, we identify distinct regions of SteD that are required for these processes. We show that SteD integrates into membranes of the ER/Golgi through a two-step mechanism of membrane recruitment from the cytoplasm followed by integration. SteD then migrates to and accumulates within the TGN. From here it hijacks the host adaptor protein (AP)1-mediated trafficking pathway from the TGN to MHCII compartments. AP1 binding and post-TGN trafficking require a short sequence in the N-terminal cytoplasmic tail of SteD that resembles the AP1-interacting dileucine sorting signal, but in inverted orientation, suggesting convergent evolution.


Asunto(s)
Sistemas de Secreción Tipo III , Red trans-Golgi , Complejo Mayor de Histocompatibilidad , Transporte de Proteínas , Salmonella/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Red trans-Golgi/metabolismo
2.
Mol Cell ; 63(2): 261-276, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27425412

RESUMEN

Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chlamydia trachomatis/enzimología , Biología Computacional , Secuencia Conservada , Bases de Datos de Proteínas , Escherichia coli/enzimología , Células HeLa , Humanos , Legionella/enzimología , Modelos Moleculares , Mutación , Filogenia , Conformación Proteica , Rickettsia/enzimología , Salmonella typhimurium/enzimología , Shigella flexneri/enzimología , Relación Estructura-Actividad , Especificidad por Sustrato , Proteasas Ubiquitina-Específicas/química , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación , Xanthomonas campestris/enzimología
3.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748571

RESUMEN

The type three secretion system injectisome of Gram-negative bacterial pathogens injects virulence proteins, called effectors, into host cells. Effectors of mammalian pathogens carry out a range of functions enabling bacterial invasion, replication, immune suppression and transmission. The injectisome secretes two translocon proteins that insert into host cell membranes to form a translocon pore, through which effectors are delivered. A subset of effectors also integrate into infected cell membranes, enabling a unique range of biochemical functions. Both translocon proteins and transmembrane effectors avoid cytoplasmic aggregation and integration into the bacterial inner membrane. Translocated transmembrane effectors locate and integrate into the appropriate host membrane. In this review, we focus on transmembrane translocon proteins and effectors of bacterial pathogens of mammals. We discuss what is known about the mechanisms underlying their membrane integration, as well as the functions conferred by the position of injectisome effectors within membranes.


Asunto(s)
Proteínas de la Membrana , Sistemas de Secreción Tipo III , Animales , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Virulencia , Bacterias Gramnegativas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mamíferos/metabolismo
4.
Microbiology (Reading) ; 169(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37862087

RESUMEN

The Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system (injectisome) is assembled following uptake of bacteria into vacuoles in mammalian cells. The injectisome translocates virulence proteins (effectors) into infected cells. Numerous studies have established the requirement for a functional SPI-2 injectisome for growth of Salmonella Typhimurium in mouse macrophages, but the results of similar studies involving Salmonella Typhi and human-derived macrophages are not consistent. It is important to clarify the functions of the S. Typhi SPI-2 injectisome, not least because an inactivated SPI-2 injectisome forms the basis for live attenuated S. Typhi vaccines that have undergone extensive trials in humans. Intracellular expression of injectisome genes and effector delivery take longer in the S. Typhi/human macrophage model than for S. Typhimurium and we propose that this could explain the conflicting results. Furthermore, strains of both S. Typhimurium and S. Typhi contain intact genes for several 'core' effectors. In S. Typhimurium these cooperate to regulate the vacuole membrane and contribute to intracellular bacterial replication; similar functions are therefore likely in S. Typhi.


Asunto(s)
Islas Genómicas , Salmonella typhi , Ratones , Animales , Humanos , Salmonella typhi/genética , Salmonella typhi/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Macrófagos/microbiología , Mamíferos/genética , Mamíferos/metabolismo
5.
PLoS Pathog ; 17(7): e1009771, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314469

RESUMEN

The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII ß chain. This requires the Nedd4 family HECT E3 ubiquitin ligase Wwp2 and a tumor-suppressing transmembrane protein adaptor Tmem127. Here, through a proteomic screen of dendritic cells, we found that SteD targets the plasma membrane protein CD97 for degradation by a similar mechanism. SteD enhanced ubiquitination of CD97 on K555 and mutation of this residue eliminated the effect of SteD on CD97 surface levels. We showed that CD97 localises to and stabilises the immunological synapse between dendritic cells and T cells. Removal of CD97 by SteD inhibited dendritic cell-T cell interactions and reduced T cell activation, independently of its effect on MHCII. Therefore, SteD suppresses T cell immunity by two distinct processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Dendríticas/inmunología , Sinapsis Inmunológicas/inmunología , Receptores Acoplados a Proteínas G/inmunología , Linfocitos T/inmunología , Animales , Presentación de Antígeno/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones por Salmonella/metabolismo , Salmonella enterica
6.
Cell Microbiol ; 23(4): e13315, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33534187

RESUMEN

Salmonella enterica serovars infect a broad range of mammalian hosts including humans, causing both gastrointestinal and systemic diseases. Following uptake into host cells, bacteria replicate within vacuoles (Salmonella-containing vacuoles; SCVs). Clusters of SCVs are frequently associated with a meshwork of F-actin. This meshwork is dependent on the Salmonella pathogenicity island 2 encoded type III secretion system and its effector SteC. SteC contains a region with weak similarity to conserved subdomains of eukaryotic kinases and has kinase activity that is required for the formation of the F-actin meshwork. Several substrates of SteC have been identified. In this mini-review, we attempt to integrate these findings and propose a more unified model to explain SCV-associated F-actin: SteC (i) phosphorylates the actin sequestering protein Hsp27, which increases the local G-actin concentration (ii) binds to and phosphorylates formin family FMNL proteins, which enables actin polymerisation and (iii) phosphorylates MEK, resulting in activation of the MEK/ERK/MLCK/Myosin II pathway, leading to F-actin bundling. We also consider the possible physiological functions of SCV-associated F-actin and similar structures produced by other intracellular bacterial pathogens.


Asunto(s)
Actinas/metabolismo , Interacciones Huésped-Patógeno , Salmonella enterica/patogenicidad , Escherichia coli Shiga-Toxigénica/metabolismo , Citoesqueleto de Actina , Actinas/genética , Animales , Células Epiteliales/microbiología , Islas Genómicas , Humanos , Ratones , Fosforilación , Vacuolas
7.
J Struct Biol ; 213(2): 107729, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774138

RESUMEN

Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A 'gatekeeper' complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region's structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Salmonella typhimurium , Sistemas de Secreción Tipo III/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Citoplasma/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Salmonella typhimurium/química , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Sistemas de Secreción Tipo III/metabolismo
8.
Microbiology (Reading) ; 165(1): 15-25, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30457515

RESUMEN

Effector proteins of type three secretion systems (T3SS) often require cytosolic chaperones for their stabilization, to interact with the secretion machinery and to enable effector delivery into host cells. We found that deletion of srcA, previously shown to encode a chaperone for the Salmonella pathogenicity island 2 (SPI-2) T3SS effectors SseL and PipB2, prevented the reduction of mature Major Histocompatibility Complex class II (mMHCII) from the surface of antigen-presenting cells during Salmonella infection. This activity was shown previously to be caused by the SPI-2 T3SS effector SteD. Since srcA and steD are located in the same operon on the Salmonella chromosome, this suggested that the srcA phenotype might be due to an indirect effect on SteD. We found that SrcA is not translocated by the SPI-2 T3SS but interacts directly and forms a stable complex with SteD in bacteria with a 2 : 1 stoichiometry. We found that SrcA was not required for SPI-2 T3SS-dependent, neutral pH-induced secretion of either SseL or PipB2 but was essential for secretion of SteD. SrcA therefore functions as a chaperone for SteD, explaining its requirement for the reduction in surface levels of mMHCII.


Asunto(s)
Proteínas Bacterianas/metabolismo , Islas Genómicas , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Chaperonas Moleculares/genética , Operón , Transporte de Proteínas , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Sistemas de Secreción Tipo III/genética
9.
PLoS Pathog ; 12(5): e1005653, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27232334

RESUMEN

Salmonella enterica replicates in macrophages through the action of effector proteins translocated across the vacuolar membrane by a type III secretion system (T3SS). Here we show that the SPI-2 T3SS effector SpvD suppresses proinflammatory immune responses. SpvD prevented activation of an NF-ĸB-dependent promoter and caused nuclear accumulation of importin-α, which is required for nuclear import of p65. SpvD interacted specifically with the exportin Xpo2, which mediates nuclear-cytoplasmic recycling of importins. We propose that interaction between SpvD and Xpo2 disrupts the normal recycling of importin-α from the nucleus, leading to a defect in nuclear translocation of p65 and inhibition of activation of NF-ĸB regulated promoters. SpvD down-regulated pro-inflammatory responses and contributed to systemic growth of bacteria in mice. This work shows that a bacterial pathogen can manipulate host cell immune responses by interfering with the nuclear transport machinery.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Salmonelosis Animal/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Virulencia/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Confocal , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Células RAW 264.7 , Salmonelosis Animal/inmunología , Salmonella enterica/inmunología , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/inmunología
10.
J Biol Chem ; 291(50): 25853-25863, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27789710

RESUMEN

Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Mutación Missense , Salmonella enteritidis , Salmonella typhimurium , Factores de Virulencia/metabolismo , Sustitución de Aminoácidos , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Catálisis , Células HEK293 , Humanos , Ratones , Infecciones por Salmonella/genética , Infecciones por Salmonella/metabolismo , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Salmonella enteritidis/patogenicidad , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Especificidad de la Especie , Factores de Virulencia/genética
11.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28069818

RESUMEN

Within host cells such as macrophages, Salmonella enterica translocates virulence (effector) proteins across its vacuolar membrane via the SPI-2 type III secretion system. Previously, it was shown that when expressed ectopically, the effectors SseK1 and SseK3 inhibit tumor necrosis factor alpha (TNF-α)-induced NF-κB activation. In this study, we show that ectopically expressed SseK1, SseK2, and SseK3 suppress TNF-α-induced, but not Toll-like receptor 4- or interleukin-induced, NF-κB activation. Inhibition required a DXD motif in SseK1 and SseK3, which is essential for the transfer of N-acetylglucosamine to arginine residues (arginine-GlcNAcylation). During macrophage infection, SseK1 and SseK3 inhibited NF-κB activity in an additive manner. SseK3-mediated inhibition of NF-κB activation did not require the only known host-binding partner of this effector, the E3-ubiquitin ligase TRIM32. SseK proteins also inhibited TNF-α-induced cell death during macrophage infection. Despite SseK1 and SseK3 inhibiting TNF-α-induced apoptosis upon ectopic expression in HeLa cells, the percentage of infected macrophages undergoing apoptosis was SseK independent. Instead, SseK proteins inhibited necroptotic cell death during macrophage infection. SseK1 and SseK3 caused GlcNAcylation of different proteins in infected macrophages, suggesting that these effectors have distinct substrate specificities. Indeed, SseK1 caused the GlcNAcylation of the death domain-containing proteins FADD and TRADD, whereas SseK3 expression resulted in weak GlcNAcylation of TRADD but not FADD. Additional, as-yet-unidentified substrates are likely to explain the additive phenotype of a Salmonella strain lacking both SseK1 and SseK3.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , FN-kappa B/metabolismo , Salmonella/fisiología , Transducción de Señal , Sistemas de Secreción Tipo III , Animales , Apoptosis , Arginina/metabolismo , Proteínas Bacterianas/genética , Muerte Celular , Línea Celular , Células Cultivadas , Técnicas de Inactivación de Genes , Glicosilación , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Unión Proteica , Transporte de Proteínas , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Cell Microbiol ; 18(7): 949-69, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26676327

RESUMEN

Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Salmonella typhimurium/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Membrana Celular/microbiología , Células HeLa/microbiología , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Vacuolas/metabolismo , Factores de Virulencia/genética
13.
J Biol Chem ; 290(13): 8383-95, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25635050

RESUMEN

Bacterial pathogens often interfere with host tyrosine phosphorylation cascades to control host responses and cause infection. Given the role of tyrosine phosphorylation events in different human infections and our previous results showing the activation of the tyrosine kinase Src upon incubation of cells with Listeria monocytogenes, we searched for novel host proteins undergoing tyrosine phosphorylation upon L. monocytogenes infection. We identify the heavy chain of the non-muscle myosin IIA (NMHC-IIA) as being phosphorylated in a specific tyrosine residue in response to L. monocytogenes infection. We characterize this novel post-translational modification event and show that, upon L. monocytogenes infection, Src phosphorylates NMHC-IIA in a previously uncharacterized tyrosine residue (Tyr-158) located in its motor domain near the ATP-binding site. In addition, we found that other intracellular and extracellular bacterial pathogens trigger NMHC-IIA tyrosine phosphorylation. We demonstrate that NMHC-IIA limits intracellular levels of L. monocytogenes, and this is dependent on the phosphorylation of Tyr-158. Our data suggest a novel mechanism of regulation of NMHC-IIA activity relying on the phosphorylation of Tyr-158 by Src.


Asunto(s)
Listeria monocytogenes/fisiología , Listeriosis/enzimología , Miosina Tipo IIA no Muscular/metabolismo , Procesamiento Proteico-Postraduccional , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Carga Bacteriana , Células CACO-2 , Activación Enzimática , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Listeriosis/microbiología , Fosforilación
14.
Infect Immun ; 84(7): 2149-2158, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27185791

RESUMEN

Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S Typhimurium delays epithelial cell turnover in the intestine.


Asunto(s)
Citocinesis , Interacciones Huésped-Patógeno , Salmonella typhimurium/fisiología , Animales , Ciclo Celular , Proliferación Celular , Femenino , Intestino Delgado/microbiología , Intestino Delgado/patología , Ratones , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Sistemas de Secreción Tipo III/metabolismo
15.
Microbiology (Reading) ; 162(6): 966-978, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27027532

RESUMEN

Mycobacterium tuberculosis infections result in a spectrum of clinical outcomes, and frequently the infection persists in a latent, clinically asymptomatic state. The within-host bacterial population is likely to be heterogeneous, and it is thought that persistent mycobacteria arise from a small population of viable, but non-replicating (VBNR) cells. These are likely to be antibiotic tolerant and necessitate prolonged treatment. Little is known about these persistent mycobacteria, since they are very difficult to isolate. To address this, we have successfully developed a replication reporter system for use in M. tuberculosis. This approach, termed fluorescence dilution, exploits two fluorescent reporters; a constitutive reporter allows the tracking of bacteria, while an inducible reporter enables the measurement of bacterial replication. The application of fluorescence single-cell analysis to characterize intracellular M. tuberculosis identified a distinct subpopulation of non-growing mycobacteria in murine macrophages. The presence of VBNR and actively replicating mycobacteria was observed within the same macrophage after 48 h of infection. Furthermore, our results suggest that macrophage uptake resulted in enrichment of non- or slowly replicating bacteria (as revealed by d-cycloserine treatment); this population is likely to be highly enriched for persisters, based on its drug-tolerant phenotype. These results demonstrate the successful application of the novel dual fluorescence reporter system both in vitro and in macrophage infection models to provide a window into mycobacterial population heterogeneity.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Macrófagos/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Análisis de la Célula Individual/métodos , Tuberculosis/microbiología , Animales , Línea Celular , Replicación del ADN , Ratones , Mycobacterium tuberculosis/genética , Células RAW 264.7
16.
J Cell Sci ; 126(Pt 14): 2990-6, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23687374

RESUMEN

Cell surface-exposed cholesterol is crucial for cell attachment and invasion of many viruses and bacteria, including the bacterium Salmonella, which causes typhoid fever and gastroenteritis. Using flow cytometry and 3D confocal fluorescence microscopy, we found that mitotic cells, although representing only 1-4% of an exponentially growing population, were much more efficiently targeted for invasion by Salmonella. This targeting was not dependent on the spherical shape of mitotic cells, but was instead SipB and cholesterol dependent. Thus, we measured the levels of plasma membrane and cell surface cholesterol throughout the cell cycle using, respectively, brief staining with filipin and a fluorescent ester of polyethylene glycol-cholesterol that cannot flip through the plasma membrane, and found that both were maximal during mitosis. This increase was due not only to the rise in global cell cholesterol levels along the cell cycle but also to a transient loss in cholesterol asymmetry at the plasma membrane during mitosis. We measured that cholesterol, but not phosphatidylserine, changed from a ∼2080 outerinner leaflet repartition during interphase to ∼5050 during metaphase, suggesting this was specific to cholesterol and not due to a broad change of lipid asymmetry during metaphase. This explains the increase in outer surface levels that make dividing cells more susceptible to Salmonella invasion and perhaps to other viruses and bacteria entering cells in a cholesterol-dependent manner. The change in cholesterol partitioning also favoured the recruitment of activated ERM (Ezrin, Radixin, Moesin) proteins at the plasma membrane and thus supported mitotic cell rounding.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Células Epiteliales/fisiología , Metafase , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/metabolismo , Procesos de Crecimiento Celular , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/microbiología , Citometría de Flujo , Gastroenteritis/microbiología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Virulencia
17.
Infect Immun ; 82(7): 2923-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24778114

RESUMEN

Salmonella enterica serovar Typhimurium is a bacterial pathogen causing gastroenteritis in humans and a typhoid-like systemic disease in mice. S. Typhimurium virulence is related to its capacity to multiply intracellularly within a membrane-bound compartment, the Salmonella-containing vacuole (SCV), and depends on type III secretion systems that deliver bacterial effector proteins into host cells. Here, we analyzed the cellular function of the Salmonella effector SteA. We show that, compared to cells infected by wild-type S. Typhimurium, cells infected by ΔsteA mutant bacteria displayed fewer Salmonella-induced filaments (SIFs), an increased clustering of SCVs, and morphologically abnormal vacuoles containing more than one bacterium. The increased clustering of SCVs and the appearance of vacuoles containing more than one bacterium were suppressed by inhibition of the activity of the microtubule motor dynein or kinesin-1. Clustering and positioning of SCVs are controlled by the effectors SseF and SseG, possibly by helping to maintain a balanced activity of microtubule motors on the bacterial vacuoles. Deletion of steA in S. Typhimurium ΔsseF or ΔsseG mutants revealed that SteA contributes to the characteristic scattered distribution of ΔsseF or ΔsseG mutant SCVs in infected cells. Overall, this shows that SteA participates in the control of SCV membrane dynamics. Moreover, it indicates that SteA is functionally linked to SseF and SseG and suggests that it might contribute directly or indirectly to the regulation of microtubule motors on the bacterial vacuoles.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular , Dineínas , Regulación de la Expresión Génica/inmunología , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Mutación , Factores de Virulencia/genética
18.
Infect Immun ; 82(8): 3436-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24891103

RESUMEN

Many Gram-negative bacteria utilize a type III secretion system (T3SS) to translocate virulence proteins into host cells to cause diseases. In responding to infection, macrophages detect some of the translocated proteins to activate caspase-1-mediated cell death, called pyroptosis, and secretion of proinflammatory cytokines to control the infection. Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. In this study, we report that the T3SS of E. tarda facilitates its survival and replication in murine bone marrow-derived macrophages, and E. tarda infection triggers pyroptosis of infected macrophages from mice and fish and increased secretion of the cytokine interleukin 1ß in a T3SS-dependent manner. Deletion of the flagellin gene fliC of E. tarda results in decreased cytotoxicity for infected macrophages and does not attenuate its virulence in a fish model of infection, whereas upregulated expression of FliC in the fliC mutant strain reduces its virulence. We propose that the host controls E. tarda infection partially by detecting FliC translocated by the T3SS, whereas the bacteria downregulate the expression of FliC to evade innate immunity.


Asunto(s)
Apoptosis , Sistemas de Secreción Bacterianos , Edwardsiella tarda/metabolismo , Flagelina/metabolismo , Macrófagos/microbiología , Macrófagos/fisiología , Factores de Virulencia/metabolismo , Animales , Supervivencia Celular , Edwardsiella tarda/patogenicidad , Peces , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Virulencia
19.
J Cell Sci ; 125(Pt 12): 2825-30, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22454526

RESUMEN

The adaptor protein Nck has been shown to link receptor ligation to actin-based signalling in a diverse range of cellular events, such as changes in cell morphology and motility. It has also been implicated in phagocytosis. However, its molecular role in controlling actin remodelling associated with phagocytic uptake remains to be clarified. Here, we show that Nck, which is recruited to phagocytic cups, is required for Fcγ receptor (FcγR)- but not complement receptor 3 (CR3)-induced phagocytosis. Nck recruitment in response to FcγR ligation is mediated by the phosphorylation of tyrosine 282 and 298 in the ITAM motif in the cytoplasmic tail of the receptor. In the absence of FcγR phosphorylation, there is also no recruitment of N-WASP or Cdc42 to phagocytic cups. Nck promotes FcγR-mediated phagocytosis by recruiting N-WASP to phagocytic cups. Efficient phagocytosis, however, only occurs, if the CRIB domain of N-WASP can also interact with Cdc42. Our observations demonstrate that Nck and Cdc42 collaborate to stimulate N-WASP-dependent FcγR-mediated phagocytosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Oncogénicas/metabolismo , Fagocitosis , Receptores de IgG/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Animales , Humanos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Proteínas Oncogénicas/genética , Unión Proteica , Receptores de IgG/química , Receptores de IgG/genética , Transducción de Señal , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/fisiopatología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína de Unión al GTP cdc42/genética
20.
PLoS Pathog ; 8(6): e1002743, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719249

RESUMEN

Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.


Asunto(s)
Autofagia , Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Células Epiteliales/parasitología , Infecciones por Salmonella/metabolismo , Salmonella enterica/enzimología , Animales , Línea Celular , Citosol/metabolismo , Citosol/parasitología , Humanos , Immunoblotting , Inmunoprecipitación , Macrófagos/parasitología , Ratones , Microscopía Confocal , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Ubiquitina/metabolismo , Vacuolas/metabolismo , Vacuolas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA