Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 92(4): 872-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24684269

RESUMEN

Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as Escherichia coli. Although the tripartite AcrAB-TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E. coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E. coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB-TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H(+) antiport.


Asunto(s)
Antiportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/toxicidad , Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
2.
J Antimicrob Chemother ; 68(4): 831-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23221628

RESUMEN

OBJECTIVES: Quaternary ammonium compounds (QACs) are used extensively as biocides and their misuse may be contributing to the development of bacterial resistance. Although the major intrinsic resistance to QACs of Gram-negative bacteria is mediated by the action of tripartite multidrug transporters of the resistance-nodulation-division family, we aimed to test if the promiscuity of the recently characterized major facilitator superfamily multidrug transporter, MdtM, from Escherichia coli enabled it also to function in the efflux of QACs. METHODS: The ability of the major facilitator mdtM gene product, when overexpressed from multicopy plasmid, to protect E. coli cells from the toxic effects of a panel of seven QACs was determined using growth inhibition assays in liquid medium. Interaction between QACs and MdtM was studied by a combination of substrate binding assays using purified protein in detergent solution and transport assays using inverted vesicles. RESULTS: E. coli cells that overproduced MdtM were less susceptible to the cytotoxic effects of each of the QACs tested compared with cells that did not overproduce the transporter. Purified MdtM bound each QAC with micromolar affinity and the protein utilized the electrochemical proton gradient to transport QACs across the cytoplasmic membrane. Furthermore, the results suggested a functional interaction between MdtM and the tripartite resistance-nodulation-division family AcrAB-TolC efflux system. CONCLUSIONS: The results support a hitherto unidentified capacity for a single-component multidrug transporter of the major facilitator superfamily, MdtM, to function in the efflux of a broad range of QACs and thus contribute to the intrinsic resistance of E. coli to these compounds.


Asunto(s)
Antiportadores/metabolismo , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Antiportadores/genética , Transporte Biológico , Desinfectantes/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Unión Proteica , Compuestos de Amonio Cuaternario/metabolismo
3.
BMC Microbiol ; 13: 113, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23701827

RESUMEN

BACKGROUND: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. RESULTS: Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. CONCLUSIONS: Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.


Asunto(s)
Álcalis/metabolismo , Antiportadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Homeostasis , Antiportadores/genética , Cationes/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Prueba de Complementación Genética , Concentración de Iones de Hidrógeno , Metales/metabolismo
5.
Biochimie ; 94(6): 1334-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22426385

RESUMEN

Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily. Functional characterisation of MdtM using growth inhibition and whole cell transport assays revealed its role in intrinsic resistance of E. coli cells to the antimicrobials ethidium bromide and chloramphenicol. Site-directed mutagenesis studies implied that the MdtM aspartate 22 residue and the highly conserved arginine at position 108 play a role in proton recognition. MdtM was homologously overexpressed and purified to homogeneity in dodecyl-ß-D-maltopyranoside detergent solution and the oligomeric state and stability of the protein in a variety of detergent solutions was investigated using size-exclusion HPLC. Purified MdtM is monomeric and stable in dodecyl-ß-D-maltopyranoside solution and binds chloramphenicol with nanomolar affinity in the same detergent. This work provides a firm foundation for structural studies on this class of multidrug transporter protein.


Asunto(s)
Antiportadores/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Secuencia de Aminoácidos , Antiportadores/genética , Antiportadores/metabolismo , Resistencia a Múltiples Medicamentos , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA