Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 627(8003): 301-305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448596

RESUMEN

Solid-state Li-S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles1-3. However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur4,5 and the poor interfacial contacts induced by its large volume change during cycling6,7, impeding charge transfer among different solid components. Here we report an S9.3I molecular crystal with I2 inserted in the crystalline sulfur structure, which shows a semiconductor-level electrical conductivity (approximately 5.9 × 10-7 S cm-1) at 25 °C; an 11-order-of-magnitude increase over sulfur itself. Iodine introduces new states into the band gap of sulfur and promotes the formation of reactive polysulfides during electrochemical cycling. Further, the material features a low melting point of around 65 °C, which enables repairing of damaged interfaces due to cycling by periodical remelting of the cathode material. As a result, an Li-S9.3I battery demonstrates 400 stable cycles with a specific capacity retention of 87%. The design of this conductive, low-melting-point sulfur iodide material represents a substantial advancement in the chemistry of sulfur materials, and opens the door to the practical realization of SSLSBs.

2.
J Am Chem Soc ; 144(39): 18009-18022, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36150188

RESUMEN

Lithium-sulfur batteries (LSBs) are among the most promising energy storage technologies due to the low cost and high abundance of S. However, the issue of polysulfide shuttling with its corresponding capacity fading is a major impediment to its commercialization. Replacing traditional liquid electrolytes with solid-state electrolytes (SEs) is a potential solution. Here, we present a comprehensive study of the thermodynamics and kinetics of the cathode-electrolyte interface in all-solid-state LSBs using density functional theory based calculations and a machine learning interatomic potential. We find that among the major solid electrolyte chemistries (oxides, sulfides, nitrides, and halides), sulfide SEs are generally predicted to be the most stable against the S8 cathode, while the other SE chemistries are predicted to be highly electrochemically unstable. If the use of other SE chemistries is desired for other reasons, several binary and ternary sulfides (e.g., LiAlS2, Sc2S3, Y2S3) are predicted to be excellent buffer layers. Finally, an accurate moment tensor potential to study the S8|ß-Li3PS4 interface was developed using an active learning approach. Molecular dynamics (MD) simulations of large interface models (>1000s atoms) revealed that the most stable Li3PS4(100) surface tends to form interfaces with S8 with 2D channels and lower activation barriers for Li diffusion. These results provide critical new insights into the cathode-electrolyte interface design for next-generation all-solid-state LSBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA