Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Cell ; 70(5): 801-813.e6, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29804829

RESUMEN

The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/metabolismo , Humanos , Mutación INDEL , Células K562 , Cinética , Modelos Genéticos
2.
Front Immunol ; 10: 651, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001265

RESUMEN

CD99 (MIC2; single-chain type-1 glycoprotein) is a heavily O-glycosylated transmembrane protein (32 kDa) present on leukocytes and activated endothelium. Expression of CD99 on endothelium is important in lymphocyte diapedesis. CD99 is a diagnostic marker for Ewing's Sarcoma (EWS), as it is highly expressed by these tumors. It has been reported that CD99 can affect the migration, invasion and metastasis of tumor cells. Our results show that CD99 is also highly expressed in the tumor vasculature of most solid tumors. Furthermore, we found that in vitro CD99 expression in cultured endothelial cells is induced by starvation. Targeting of murine CD99 by a conjugate vaccine, which induced antibodies against CD99 in mice, resulted in inhibition of tumor growth in both a tumor model with high CD99 (Os-P0109 osteosarcoma) and low CD99 (CT26 colon carcinoma) expression. We demonstrated that vaccination against CD99 is safe, since no toxicity was observed in mice with high antibody titers against CD99 in their sera during a period of almost 11 months. Targeting of CD99 in humans is more complicated due to the fact that the human and mouse CD99 protein are not identical. We are the first to show that growth factor activated endothelial cells express a distinct human CD99 isoform. We conclude that our observations provide an opportunity for specific targeting of CD99 isoforms in human tumor vasculature.


Asunto(s)
Antígeno 12E7/inmunología , Vacunas contra el Cáncer/uso terapéutico , Endotelio Vascular/inmunología , Sarcoma de Ewing/terapia , Animales , Línea Celular Tumoral , Femenino , Células Endoteliales de la Vena Umbilical Humana/inmunología , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Empalme de Proteína , Sarcoma de Ewing/inmunología , Sarcoma de Ewing/patología , Carga Tumoral
3.
Prog Neurobiol ; 169: 172-185, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981394

RESUMEN

Nerve impulse generation and propagation are often thought of as solely electrical events. The prevalence of this view is the result of long and intense study of nerve impulses in electrophysiology culminating in the introduction of the Hodgkin-Huxley model of the action potential in the 1950s. To this day, this model forms the physiological foundation for a broad area of neuroscientific research. However, the Hodgkin-Huxley model cannot account for non-electrical phenomena that accompany nerve impulse propagation, for which there is nevertheless ample evidence. This raises the question whether the Hodgkin-Huxley model is a complete model of the nerve impulse. Several alternative models have been proposed that do take into account non-electrical aspects of the nerve impulse and emphasize their importance in gaining a more complete understanding of the nature of the nerve impulse. In our opinion, these models deserve more attention in neuroscientific research, since, together with the Hodgkin-Huxley model, they will help in addressing and solving a number of questions in basic and applied neuroscience which thus far have remained outside our grasp. Here we provide a historico-scientific overview of the developments that have led to the current conception of the action potential as an electrical phenomenon, discuss some major objections against this conception, and suggest a number of scientific factors which have likely contributed to the enduring success of the Hodgkin-Huxley model and should be taken into consideration whilst contemplating the formulation of a more extensive and complete conception of the nerve impulse.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA