Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biochim Biophys Acta ; 1843(8): 1629-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24129268

RESUMEN

Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel - a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Asunto(s)
Sistemas de Secreción Bacterianos , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Proteínas de la Fusión de la Membrana/química , Proteínas de la Fusión de la Membrana/metabolismo , Mapas de Interacción de Proteínas/genética , Transporte de Proteínas/genética , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad
2.
J Biol Chem ; 285(52): 40573-80, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20971850

RESUMEN

Secretion of the Escherichia coli toxin hemolysin A (HlyA) is catalyzed by the membrane protein complex HlyB-HlyD-TolC and requires a secretion sequence located within the last 60 amino acids of HlyA. The Hly translocator complex exports a variety of passenger proteins when fused N-terminal to this secretion sequence. However, not all fusions are secreted efficiently. Here, we demonstrate that the maltose binding protein (MalE) lacking its natural export signal and fused to the HlyA secretion signal is poorly secreted by the Hly system. We anticipated that folding kinetics might be limiting secretion, and we therefore introduced the "folding" mutation Y283D. Indeed this mutant fusion protein was secreted at a much higher level. This level was further enhanced by the introduction of a second MalE folding mutation (V8G or A276G). Secretion did not require the molecular chaperone SecB. Folding analysis revealed that all mutations reduced the refolding rate of the substrate, whereas the unfolding rate was unaffected. Thus, the efficiency of secretion by the Hly system is dictated by the folding rate of the substrate. Moreover, we demonstrate that fusion proteins defective in export can be engineered for secretion while still retaining function.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Pliegue de Proteína , Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Hemolisinas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación Missense , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo
3.
Microbiology (Reading) ; 157(Pt 9): 2456-2469, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21602220

RESUMEN

The non-domesticated Bacillus subtilis strain 3610 displays, over a wide range of humidity, hyper-branched, dendritic, swarming-like migration on a minimal agar medium. At high (70 %) humidity, the laboratory strain 168 sfp+ (producing surfactin) behaves very similarly, although this strain carries a frameshift mutation in swrA, which another group has shown under their conditions (which include low humidity) is essential for swarming. We reconcile these different results by demonstrating that, while swrA is essential for dendritic migration at low humidity (30-40 %), it is dispensable at high humidity. Dendritic migration (flagella- and surfactin-dependent) of strains 168 sfp+ swrA and 3610 involves elongation of dendrites for several hours as a monolayer of cells in a thin fluid film. This enabled us to determine in situ the spatiotemporal pattern of expression of some key players in migration as dendrites develop, using gfp transcriptional fusions for hag (encoding flagellin), comA (regulation of surfactin synthesis) as well as eps (exopolysaccharide synthesis). Quantitative (single-cell) analysis of hag expression in situ revealed three spatially separated subpopulations or cell types: (i) networks of chains arising early in the mother colony (MC), expressing eps but not hag; (ii) largely immobile cells in dendrite stems expressing intermediate levels of hag; and (iii) a subpopulation of cells with several distinctive features, including very low comA expression but hyper-expression of hag (and flagella). These specialized cells emerge from the MC to spearhead the terminal 1 mm of dendrite tips as swirling and streaming packs, a major characteristic of swarming migration. We discuss a model for this swarming process, emphasizing the importance of population density and of the complementary roles of packs of swarmers driving dendrite extension, while non-mobile cells in the stems extend dendrites by multiplication.


Asunto(s)
Bacillus subtilis/fisiología , Flagelina/metabolismo , Bacillus subtilis/clasificación , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biota , Flagelina/genética , Regulación Bacteriana de la Expresión Génica , Humedad , Análisis de la Célula Individual
4.
Artículo en Inglés | MEDLINE | ID: mdl-21543878

RESUMEN

The ABC transporter haemolysin B (HlyB) from Escherichia coli is part of a type I secretion system that translocates a 110 kDa toxin in one step across both membranes of this Gram-negative bacterium in an ATP-dependent manner. Sequence analysis indicates that HlyB contains a C39 peptidase-like domain at its N-terminus. C39 domains are thiol-dependent peptidases that cleave their substrates after a GG motif. Interestingly, the catalytically invariant cysteine is replaced by a tyrosine in the C39-like domain of HlyB. Here, the overexpression, purification and crystallization of the isolated C39-like domain are described as a first step towards obtaining structural insights into this domain and eventually answering the question concerning the function of a degenerated C39 domain in the ABC transporter HlyB.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Proteínas Portadoras/química , Escherichia coli/química , Proteínas Hemolisinas/química , Replegamiento Proteico , Cristalización , Cristalografía por Rayos X , Multimerización de Proteína
5.
Microbiology (Reading) ; 156(Pt 8): 2495-2505, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20430809

RESUMEN

Escherichia coli haemolysin A (HlyA), an RTX toxin, is secreted probably as an unfolded intermediate, by the type I (ABC transporter-dependent) pathway, utilizing a C-terminal secretion signal. However, the mechanism of translocation and post-translocation folding is not understood. We identified a mutation (hlyA99) at the extreme C terminus, which is dominant in competition experiments, blocking secretion of the wild-type toxin co-expressed in the same cell. This suggests that unlike recessive mutations which affect recognition of the translocation machinery, the hlyA99 mutation interferes with some later step in secretion. Indeed, the mutation reduced haemolytic activity of the toxin and the activity of beta-lactamase when the latter was fused to a C-terminal 23 kDa fragment of HlyA carrying the hlyA99 mutation. A second mutant (hlyAdel6), lacking the six C-terminal residues of HlyA, also showed reduced haemolytic activity and neither mutant protein regained normal haemolytic activity in in vitro unfolding/refolding experiments. Tryptophan fluorescence spectroscopy indicated differences in structure between the secreted forms of wild-type HlyA and the HlyA Del6 mutant. These results suggested that the mutations affected the correct folding of both HlyA and the beta-lactamase fusion. Thus, we propose a dual function for the HlyA C terminus involving an important role in post-translocation folding as well as targeting HlyA for secretion.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Hemolisinas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Hemolisinas/genética , Hemólisis , Datos de Secuencia Molecular , Mutación , Pliegue de Proteína , beta-Lactamasas/metabolismo
6.
FEBS Lett ; 594(23): 3767-3775, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978974

RESUMEN

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/clasificación , Dominios Proteicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Pliegue de Proteína
7.
Biochim Biophys Acta ; 1778(6): 1415-22, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18342619

RESUMEN

The results here show for the first time that pH and monovalent cations can regulate cytosolic free Ca(2+) in E. coli through Ca(2+) influx and efflux, monitored using aequorin. At pH 7.5 the resting cytosolic free Ca(2+) was 0.2-0.5 microM. In the presence of external Ca(2+) (1 mM) at alkaline pH this rose to 4 microM, being reduced to 0.9 microM at acid pH. Removal of external Ca(2+) caused an immediate decrease in cytosolic free Ca(2+) at 50-100 nM s(-1). Efflux rates were the same at pH 5.5, 7.5 and 9.5. Thus, ChaA, a putative Ca(2+)/H(+)exchanger, appeared not to be a major Ca(2+)-efflux pathway. In the absence of added Na(+), but with 1 mM external Ca(2+), cytosolic free Ca(2+) rose to approximately 10 microM. The addition of Na(+)(half maximum 60 mM) largely blocked this increase and immediately stimulated Ca(2+) efflux. However, this effect was not specific, since K(+) also stimulated efflux. In contrast, an increase in osmotic pressure by addition of sucrose did not significantly stimulate Ca(2+) efflux. The results were consistent with H(+) and monovalent cations competing with Ca(2+) for a non-selective ion influx channel. Ca(2+) entry and efflux in chaA and yrbG knockouts were not significantly different from wild type, confirming that neither ChaA nor YrbG appear to play a major role in regulating cytosolic Ca(2+) in Escherichia coli. The number of Ca(2+) ions calculated to move per cell per second ranged from <1 to 100, depending on conditions. Yet a single eukaryote Ca(2+) channel, conductance 100 pS, should conduct >6 million ions per second. This raises fundamental questions about the nature and regulation of Ca(2+) transport in bacteria, and other small living systems such as mitochondria, requiring a new mathematical approach to describe such ion movements. The results have important significance in the adaptation of E. coli to different ionic environments such as the gut, fresh water and in sea water near sewage effluents.


Asunto(s)
Adaptación Fisiológica , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potasio/metabolismo , Adaptación Fisiológica/genética , Calcio/farmacología , Proteínas de Transporte de Catión/genética , Cationes Monovalentes/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Concentración de Iones de Hidrógeno , Transporte Iónico/genética
8.
Res Microbiol ; 170(8): 304-320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31442613

RESUMEN

This review will inevitably be influenced by my personal experience and personal view of the progression of this amazing family of proteins. This has generated a huge literature in over nearly five decades, some ideas have bloomed and faded while others have persisted, other contributions simply become redundant, overtaken by better techniques. At the outset, the pioneers had no idea of the magnitude of the topic they were working on, then a very rough idea of the significance emerged and, progressively, the picture becomes sharper and finally extraordinary. I have tried to produce at least an outline of that progression. My apologies for the also inevitable omissions, especially relating to the mass of biochemical and spectroscopy and genetical studies. I decided to prioritise structural biology because structures when successful are definitive and of course provide a 'visual' image. However, I tried to limit the structural aspects to the proteins that reflected the main advances.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Antibacterianos/metabolismo , Bacterias/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico/fisiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/fisiología , Metabolismo de los Lípidos/fisiología , Conformación Proteica
9.
Microbiol Spectr ; 7(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30848237

RESUMEN

Type I secretion systems (T1SS) are widespread in Gram-negative bacteria, especially in pathogenic bacteria, and they secrete adhesins, iron-scavenger proteins, lipases, proteases, or pore-forming toxins in the unfolded state in one step across two membranes without any periplasmic intermediate into the extracellular space. The substrates of T1SS are in general characterized by a C-terminal secretion sequence and nonapeptide repeats, so-called GG repeats, located N terminal to the secretion sequence. These GG repeats bind Ca2+ ions in the extracellular space, which triggers folding of the entire protein. Here we summarize our current knowledge of how Gram-negative bacteria secrete these substrates, which can possess a molecular mass of up to 1,500 kDa. We also describe recent findings that demonstrate that the absence of periplasmic intermediates, the "classic" mode of action, does not hold true for all T1SS and that we are beginning to realize modifications of a common theme.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Sistemas de Secreción Tipo I/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Transporte Biológico , Transporte de Proteínas
10.
Proteomics ; 8(18): 3682-91, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18709634

RESUMEN

Surfactins are a family of heptacyclopeptides in which the C-terminal carbonyl is linked with the beta-hydroxy group of a fatty acid acylating the N-terminal function of a glutamic acid residue. The fatty acyl chain is 12-16 carbon atoms long. These compounds, which are secreted by the Gram-positive bacterium Bacillus subtilis in stationary phase in liquid cultures, play an important role in swarming communities on the surface of agar media in the formation of dendritic patterns. TOF secondary ion MS (TOF-SIMS) imaging was used to map surfactins within 16-17 h swarming patterns, with a 2 mum spatial resolution. Surfactins were mainly located in the central mother colony (the site of initial inoculation), in a 'ring' surrounding the pattern and along the edges of the dendrites. In the mother colony and the interior of the dendrites, surfactins with shorter chain lengths are present, whereas in the ring surrounding the swarm community and between dendrites, surfactins with longer fatty acyl chain lengths were found. A quantitative analysis by MALDI-TOF MS showed a concentration gradient of surfactin from the mother colony to the periphery. The concentration of surfactin was approximately 400 pmol/mL in the mother colony and approximately 10 pmol/mL at the base of the dendrites, decreasing to 2 pmol/mL at their tips.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/análisis , Lipopéptidos/análisis , Péptidos Cíclicos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
J Struct Biol ; 162(1): 85-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18155559

RESUMEN

TNP-modified nucleotides have been used extensively to study protein-nucleotide interactions. In the case of ABC-ATPases, application of these powerful tools has been greatly restricted due to the significantly higher affinity of the TNP-nucleotide for the corresponding ABC-ATPase in comparison to the non-modified nucleotides. To understand the molecular changes occurring upon binding of the TNP-nucleotide to an ABC-ATPase, we have determined the crystal structure of the TNP-ADP/HlyB-NBD complex at 1.6A resolution. Despite the higher affinity of TNP-ADP, no direct fluorophore-protein interactions were observed. Unexpectedly, only water-mediated interactions were detected between the TNP moiety and Tyr(477), that is engaged in pi-pi stacking with the adenine ring, as well as with two serine residues (Ser(504) and Ser(509)) of the Walker A motif. Interestingly, the side chains of these two serine residues adopt novel conformations that are not observed in the corresponding ADP structure. However, in the crystal structure of the S504A mutant, which binds TNP-ADP with similar affinity to the wild type enzyme, a novel TNP-water interaction compensates for the missing serine side chain. Since this water molecule is not present in the wild type enzyme, these results suggest that only water-mediated interactions provide a structural explanation for the increased affinity of TNP-nucleotides towards ABC-ATPases. However, our results also imply that in silico approaches such as docking or modeling cannot directly be applied to generate 'affinity-adopted' ADP- or ATP-analogs for ABC-ATPases.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Adenosina Trifosfatasas/química , Proteínas/química , Agua/química , Adenosina Difosfato/química , Colorantes Fluorescentes/química , Modelos Moleculares , Estructura Molecular , Unión Proteica , Estructura Secundaria de Proteína
12.
Cell Calcium ; 41(2): 97-106, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16842848

RESUMEN

The results here are the first demonstration of a physiological agonist opening Ca2+ channels in bacteria. Bacteria in the gut ferment glucose and other substrates, producing alcohols, diols, ketones and acids, that play a key role in lactose intolerance, through the activation of Ca2+ and other ion channels in host cells and neighbouring bacteria. Here we show butane 2,3-diol (5-200mM; half maximum 25mM) activates Ca2+ transients in E. coli, monitored by aequorin. Ca2+-transient magnitude depended on external Ca2+ (0.1-10mM). meso-Butane 2,3-diol was approximately twice as potent as 2R,3R (-) and 2S,3S (+) butane 2,3-diol. There were no detectable effects on cytosolic free Ca2+ of butane 1,3-diol, butane 1,4-diol and ethylene glycol. The glycerol fermentation product propane 1,3-diol only induced significant Ca2+ transients in 10mM external Ca2. Ca2+ butane 2,3-diol Ca2+ transients were due to activation of Ca2+ influx, followed by activation of Ca2+ efflux. The effect of butane 2,3-diol was abolished by La3+, and markedly reduced as a function of growth phase. These results were consistent with butane 2,3-diol activating a novel La3+-sensitive Ca2+ channel. They have important implications for the role of butane 2,3-diol and Ca2+ in bacterial-host cell signalling.


Asunto(s)
Butileno Glicoles/farmacología , Canales de Calcio/metabolismo , Calcio/metabolismo , Fermentación , Lantano/farmacología , Señalización del Calcio , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli , Propano/farmacología , Estereoisomerismo
13.
Arch Biochem Biophys ; 468(1): 107-13, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17961498

RESUMEN

The results here are the first demonstration of a family of carbohydrate fermentation products opening Ca2+ channels in bacteria. Methylglyoxal, acetoin (acetyl methyl carbinol), diacetyl (2,3 butane dione), and butane 2,3 diol induced Ca2+ transients in Escherichia coli, monitored by aequorin, apparently by opening Ca2+ channels. Methylglyoxal was most potent (K(1/2) = 1 mM, 50 mM for butane 2,3 diol). Ca2+ transients depended on external Ca2+ (0.1-10 mM), and were blocked by La3+ (5 mM). The metabolites affected growth, methylglyoxal being most potent, blocking growth completely up to 5 h without killing the cells. But there was no affect on the number of viable cells after 24 h. These results were consistent with carbohydrate products activating a La3+-sensitive Ca2+ channel, rises in cytosolic Ca2+ possibly protecting against certain toxins. They have important implications in bacterial-host cell signalling, and where numbers of different bacteria compete for the same substrates, e.g., the gut in lactose and food intolerance.


Asunto(s)
Acetales/administración & dosificación , Acetoína/administración & dosificación , Señalización del Calcio/fisiología , Diacetil/administración & dosificación , Escherichia coli/fisiología , Lantano/administración & dosificación , Piruvaldehído/administración & dosificación , Señalización del Calcio/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/fisiología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Escherichia coli/efectos de los fármacos
14.
mBio ; 8(1)2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28174308

RESUMEN

Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. IMPORTANCE: Swarming motility enables rapid coordinated surface translocation of a microbial community, preceding the formation of a biofilm. This movement occurs in thin films and involves specialized swarmer cells localized to a narrow zone at the extreme swarm edge. In the B. subtilis system, using a synthetic medium, the swarm front remains as a cellular monolayer for up to 1.5 cm. Swarmers display high-velocity whirls and vortexing and are often assumed to drive community expansion at the expense of cell growth. Surprisingly, little attention has been paid to which cells in a swarm are actually growing and contributing to the overall biomass. Here, we show that swarmers not only lead the population forward but continue to multiply as a source of all cells in the community. We present a model that explains how exponential growth of only a few cells is compatible with the linear expansion rate of the swarm.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Medios de Cultivo/química , Replicación del ADN , Modelos Teóricos , Peptidoglicano/biosíntesis , Biosíntesis de Proteínas
15.
Naunyn Schmiedebergs Arch Pharmacol ; 372(6): 385-99, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16541253

RESUMEN

The transport of substrates across a cellular membrane is a vitally important biological function essential for cell survival. ATP-binding cassette (ABC) transporters constitute one of the largest subfamilies of membrane proteins, accomplishing this task. Mutations in genes encoding for ABC transporters cause different diseases, for example, Adrenoleukodystrophy, Stargardt disease or Cystic Fibrosis. Furthermore, some ABC transporters are responsible for multidrug resistance, presenting a major obstacle in modern cancer chemotherapy. In order to translocate the enormous variety of substrates, ranging from ions, nutrients, small peptides to large toxins, different ABC-transporters utilize the energy gained from ATP binding and hydrolysis. The ATP binding cassette, also called the motor domain of ABC transporters, is highly conserved among all ABC transporters. The ability to purify this domain rather easily presents a perfect possibility to investigate the mechanism of ATP hydrolysis, thus providing us with a detailed picture of this process. Recently, many crystal structures of the ATP-binding domain and the full-length structures of two ABC transporters have been solved. Combining these structural data, we have now the opportunity to analyze the hydrolysis event on a molecular level. This review provides an overview of the structural investigations of the ATP-binding domains, highlighting molecular changes upon ATP binding and hydrolysis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
16.
Biochem J ; 386(Pt 3): 489-95, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15636583

RESUMEN

The ATPase activity of the ABC (ATP-binding cassette) ATPase domain of the HlyB (haemolysin B) transporter is required for secretion of Escherichia coli haemolysin via the type I pathway. Although ABC transporters are generally presumed to function as dimers, the precise role of dimerization remains unclear. In the present study, we have analysed the HlyB ABC domain, purified separately from the membrane domain, with respect to its activity and capacity to form physically detectable dimers. The ATPase activity of the isolated ABC domain clearly demonstrated positive co-operativity, with a Hill coefficient of 1.7. Furthermore, the activity is (reversibly) inhibited by salt concentrations in the physiological range accompanied by proportionately decreased binding of 8-azido-ATP. Inhibition of activity with increasing salt concentration resulted in a change in flexibility as detected by intrinsic tryptophan fluorescence. Finally, ATPase activity was sensitive towards orthovanadate, with an IC50 of 16 microM, consistent with the presence of transient dimers during ATP hydrolysis. Nevertheless, over a wide range of protein or of NaCl or KCl concentrations, the ABC ATPase was only detected as a monomer, as measured by ultracentrifugation or gel filtration. In contrast, in the absence of salt, the sedimentation velocity determined by analytical ultracentrifugation suggested a rapid equilibrium between monomers and dimers. Small amounts of dimers, but apparently only when stabilized by 8-azido-ATP, were also detected by gel filtration, even in the presence of salt. These data are consistent with the fact that monomers can interact at least transiently and are the important species during ATP hydrolysis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/enzimología , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Azidas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Cromatografía en Gel , Codón/genética , Dimerización , Escherichia coli/genética , Fluorescencia , Proteínas Hemolisinas , Cinética , Mutación/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Cloruro de Potasio/farmacología , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Cloruro de Sodio/farmacología , Solubilidad , Temperatura , Triptófano/metabolismo , Ultracentrifugación , Vanadatos/farmacología
17.
EcoSal Plus ; 7(1)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28084193

RESUMEN

A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo I/genética , Sistemas de Secreción Tipo I/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas
18.
Biochim Biophys Acta ; 1612(1): 90-7, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12729934

RESUMEN

PHB(polyP) complexes bind calcium and form calcium channels in the cytoplasmic membrane in Escherichia coli and are likely to be important in Ca(2+) homeostasis in this organism. E. coli N43, which lacks the AcrA component of a major multidrug resistance pump, was shown to be defective in calcium handling, with an inability to maintain submicromolar levels of free Ca(2+) in the cytoplasm. Therefore, using an N-phenyl-1-napthylamine (NPN)-dependent fluorescence assay, we measured temperature-dependent phase transitions in the membranes of intact cells. These transitions specifically depend on the presence of PHB(Ca(2+)polyP) complexes. PHB(Ca(2+)polyP) channel complexes, particularly in stationary phase cultures, were detected in wild-type strains; however, in contrast, isogenic acrA(-) strains had greatly reduced amounts of the complexes. This indicates that the AcrAB transporter may have a novel, hitherto undetected physiological role, either directly in the membrane assembly of the PHB complexes or the transport of a component of the membrane, which is essential for assembly of the complexes into the membrane. In other experiments, we showed that the particular defective calcium handling detected in N43 was not due to the absence of AcrA but to other unknown factors in this strain.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Proteínas Portadoras/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Hidroxibutiratos/análisis , Lipoproteínas/fisiología , Proteínas de la Membrana/fisiología , Poliésteres/análisis , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos
19.
J Mol Biol ; 330(2): 333-42, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12823972

RESUMEN

The ABC-transporter haemolysin B is a central component of the secretion machinery that translocates the toxin, haemolysin A, in a Sec-independent fashion across both membranes of E. coli. Here, we report the X-ray crystal structure of the nucleotide-binding domain (NBD) of HlyB. The molecule shares the common overall architecture of ABC-transporter NBDs. However, the last three residues of the Walker A motif adopt a 3(10) helical conformation, stabilized by a bound anion. In consequence, this results in an unusual interaction between the Walker A lysine residue and the Walker B glutamate residue. As these residues are normally required to be available for ATP binding, for catalysis and for dimer formation of ABC domains, we suggest that this conformation may represent a latent monomeric form of the NBD. Surprisingly, comparison of available NBD structures revealed a structurally diverse region (SDR) of about 30 residues within the helical arm II domain, unique to each of the eight NBDs analyzed. As this region interacts with the transmembrane part of ABC-transporters, the SDR helps to explain the selectivity and/or targeting of different NBDs to their cognate transmembrane domains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfatasas/química , Proteínas Hemolisinas/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Methanococcus/química , Methanococcus/enzimología , Methanococcus/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
20.
J Mol Biol ; 327(5): 1169-79, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12662939

RESUMEN

A member of the family of RTX toxins, Escherichia coli haemolysin A, is secreted from Gram-negative bacteria. It carries a C-terminal secretion signal of approximately 50 residues, targeting the protein to the secretion or translocation complex, in which the ABC-transporter HlyB is a central element. We have purified the nucleotide-binding domain of HlyB (HlyB-NBD) and a C-terminal 23kDa fragment of HlyA plus the His-tag (HlyA1), which contains the secretion sequence. Employing surface plasmon resonance, we were able to demonstrate that the HlyB-NBD and HlyA1 interact with a K(D) of approximately 4 microM. No interaction was detected between the HlyA fragment and unrelated NBDs, OpuAA, involved in import of osmoprotectants, and human TAP1-NBD, involved in the export of antigenic peptides. Moreover, a truncated version of HlyA1, lacking the secretion signal, failed to interact with the HlyB-NBD. In addition, we showed that ATP accelerated the dissociation of the HlyB-NBD/HlyA1 complex. Taking these results together, we propose a model for an early stage of initiation of secretion in vivo, in which the NBD of HlyB, specifically recognizes the C terminus of the transport substrate, HlyA, and where secretion is initiated by subsequent displacement of HlyA from HlyB by ATP.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/química , Proteínas Portadoras/química , Escherichia coli/química , Proteínas Hemolisinas/química , Unión Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA