Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(22): 12303-12324, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956271

RESUMEN

Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.


Asunto(s)
Origen de Réplica , Saccharomyces cerevisiae , Cromatina/genética , ADN , Replicación del ADN , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 49(8): 4325-4337, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33872356

RESUMEN

A-to-I RNA editing is a common post transcriptional mechanism, mediated by the Adenosine deaminase that acts on RNA (ADAR) enzymes, that increases transcript and protein diversity. The study of RNA editing is limited by the absence of editing maps for most model organisms, hindering the understanding of its impact on various physiological conditions. Here, we mapped the vertebrate developmental landscape of A-to-I RNA editing, and generated the first comprehensive atlas of editing sites in zebrafish. Tens of thousands unique editing events and 149 coding sites were identified with high-accuracy. Some of these edited sites are conserved between zebrafish and humans. Sequence analysis of RNA over seven developmental stages revealed high levels of editing activity in early stages of embryogenesis, when embryos rely on maternal mRNAs and proteins. In contrast to the other organisms studied so far, the highest levels of editing were detected in the zebrafish ovary and testes. This resource can serve as the basis for understanding of the role of editing during zebrafish development and maturity.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Edición de ARN , Pez Cebra/embriología , Pez Cebra/genética , Adenosina/genética , Animales , Código Genético , Inosina/genética
3.
Dev Cell ; 58(12): 1037-1051.e4, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37119815

RESUMEN

The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.


Asunto(s)
Nicho de Células Madre , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Endoteliales/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Regulación de la Expresión Génica
4.
Nat Commun ; 12(1): 3358, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099733

RESUMEN

Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.


Asunto(s)
Rastreo Celular/métodos , Embrión no Mamífero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , Pez Cebra/genética , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/citología , Oocitos/metabolismo , ARN Mensajero/metabolismo , Análisis de la Célula Individual/métodos , Análisis Espacio-Temporal , Especificidad de la Especie , Xenopus/embriología , Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Pez Cebra/embriología
5.
Methods Mol Biol ; 1920: 129-141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30737690

RESUMEN

Embryonic development is heavily dependent on temporally and spatially restricted gene expression. Spatially resolved measurements of gene expression are therefore crucial for identifying novel regulators and the understanding of their function. However, in situ methods do not resolve global gene expression, and sequencing-based methods usually do not provide spatial information. Here, we describe tomo-seq, a method that combines classical histological sectioning of embryos or tissues with a highly sensitive RNA-sequencing technique. Application of tomo-seq to zebrafish embryos allows reconstructing the spatial gene expression of thousands of genes.


Asunto(s)
Desarrollo Embrionario/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Animales , Biología Computacional , Biblioteca de Genes , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Flujo de Trabajo , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA