Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37804831

RESUMEN

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Asunto(s)
Alphavirus , Animales , Humanos , Fiebre Chikungunya , Virus Chikungunya/química , Mamíferos , Receptores Virales/metabolismo
2.
PLoS Pathog ; 16(10): e1008876, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091085

RESUMEN

Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.


Asunto(s)
Infecciones por Alphavirus/virología , Alphavirus/fisiología , Interacciones Huésped-Patógeno , Internalización del Virus , Replicación Viral , Animales , Humanos
3.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31413128

RESUMEN

Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.


Asunto(s)
Interacciones Huésped-Patógeno , Infecciones por Picornaviridae/virología , Picornaviridae/patogenicidad , ARN/metabolismo , Replicación Viral , Animales , Humanos , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/metabolismo , ARN/genética
4.
Bioorg Med Chem Lett ; 24(6): 1538-44, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24559768

RESUMEN

We previously reported the identification and development of novel inhibitors of streptokinase (SK) expression by Group A Streptococcus (GAS), originating from a high throughput cell-based phenotypic screen. Although phenotypic screening is well-suited to identifying compounds that exert desired biological effects in potentially novel ways, it requires follow-up experiments to determine the macromolecular target(s) of active compounds. We therefore designed and synthesized several classes of chemical probes for target identification studies, guided by previously established structure-activity relationships. The probes were designed to first irreversibly photolabel target proteins in the intact bacteria, followed by cell lysis and click ligation with fluorescent tags to allow for visualization on SDS-PAGE gels. This stepwise, 'tag-free' approach allows for a significant reduction in molecular weight and polar surface area compared to full-length fluorescent or biotinylated probes, potentially enhancing membrane permeability and the maintenance of activity. Of the seven probes produced, the three most biologically active were employed in preliminary target identification trials. Despite the potent activity of these probes, specific labeling events were not conclusively observed due to a considerable degree of nonspecific protein binding. Nevertheless, the successful synthesis of potent biologically active probe molecules will serve as a starting point for initiating more sensitive methods of probe-based target identification.


Asunto(s)
Sondas Moleculares/química , Streptococcus pyogenes/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Azidas/química , Benzofenonas/síntesis química , Benzofenonas/química , Benzofenonas/farmacología , Química Clic , Sondas Moleculares/síntesis química , Sondas Moleculares/farmacología , Relación Estructura-Actividad , Factores de Virulencia/metabolismo
5.
Cell Rep ; 43(3): 113876, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446669

RESUMEN

Alphaviruses are mosquito-transmitted pathogens that induce high levels of viremia, which facilitates dissemination and vector transmission. One prevailing paradigm is that, after skin inoculation, alphavirus-infected resident dendritic cells migrate to the draining lymph node (DLN), facilitating further rounds of infection and dissemination. Here, we assess the contribution of infiltrating myeloid cells to alphavirus spread. We observe two phases of virus transport to the DLN, one that occurs starting at 1 h post infection and precedes viral replication, and a second that requires replication in the skin, enabling transit to the bloodstream. Depletion of Ly6C+ monocytes reduces local chikungunya (CHIKV) or Ross River virus (RRV) infection in the skin, diminishes the second phase of virus transport to the DLN, and delays spread to distal sites. Our data suggest that infiltrating monocytes facilitate alphavirus infection at the initial infection site, which promotes more rapid spread into circulation.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Monocitos/patología , Mosquitos Vectores , Fiebre Chikungunya/patología , Células Mieloides , Replicación Viral
6.
J Clin Invest ; 133(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36647825

RESUMEN

Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Animales , Humanos , Alphavirus/genética
7.
Cell Rep ; 42(2): 112126, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36795561

RESUMEN

To disseminate through the body, Zika virus (ZIKV) is thought to exploit the mobility of myeloid cells, in particular monocytes and dendritic cells. However, the timing and mechanisms underlying shuttling of the virus by immune cells remains unclear. To understand the early steps in ZIKV transit from the skin, at different time points, we spatially mapped ZIKV infection in lymph nodes (LNs), an intermediary site en route to the blood. Contrary to prevailing hypotheses, migratory immune cells are not required for the virus to reach the LNs or blood. Instead, ZIKV rapidly infects a subset of sessile CD169+ macrophages in the LNs, which release the virus to infect downstream LNs. Infection of CD169+ macrophages alone is sufficient to initiate viremia. Overall, our experiments indicate that macrophages that reside in the LNs contribute to initial ZIKV spread. These studies enhance our understanding of ZIKV dissemination and identify another anatomical site for potential antiviral intervention.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Macrófagos , Monocitos/patología , Ganglios Linfáticos/patología
8.
Cell Rep ; 35(1): 108962, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826892

RESUMEN

Although neutralizing monoclonal antibodies (mAbs) against epitopes within the alphavirus E2 protein can protect against infection, the functional significance of non-neutralizing mAbs is poorly understood. Here, we evaluate the activity of 13 non-neutralizing mAbs against Mayaro virus (MAYV), an emerging arthritogenic alphavirus. These mAbs bind to the MAYV virion and surface of infected cells but fail to neutralize infection in cell culture. Mapping studies identify six mAb binding groups that localize to discrete epitopes within or adjacent to the A domain of the E2 glycoprotein. Remarkably, passive transfer of non-neutralizing mAbs protects against MAYV infection and disease in mice, and their efficacy requires Fc effector functions. Monocytes mediate the protection of non-neutralizing mAbs in vivo, as Fcγ-receptor-expressing myeloid cells facilitate the binding, uptake, and clearance of MAYV without antibody-dependent enhancement of infection. Humoral protection against alphaviruses likely reflects contributions from non-neutralizing antibodies through Fc-dependent mechanisms that accelerate viral clearance.


Asunto(s)
Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/prevención & control , Alphavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Mapeo Epitopo , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Monocitos/metabolismo , Enfermedades Musculoesqueléticas/inmunología , Enfermedades Musculoesqueléticas/virología , Células Mieloides/metabolismo , Receptores de IgG/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Virión/metabolismo
9.
Viruses ; 12(2)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023921

RESUMEN

In this study, we characterized the role of host cell protein tyrosyl-DNA phosphodiesterase 2 (TDP2) activity, also known as VPg unlinkase, in picornavirus infections in a human cell model of infection. TDP2/VPg unlinkase is used by picornaviruses to remove the small polypeptide, VPg (Virus Protein genome-linked, the primer for viral RNA synthesis), from virus genomic RNA. We utilized a CRISPR/Cas-9-generated TDP2 knock out (KO) human retinal pigment epithelial-1 (hRPE-1) cell line, in addition to the wild type (WT) counterpart for our studies. We determined that in the absence of TDP2, virus growth kinetics for two enteroviruses (poliovirus and coxsackievirus B3) were delayed by about 2 h. Virus titers were reduced by ~2 log10 units for poliovirus and 0.5 log10 units for coxsackievirus at 4 hours post-infection (hpi), and by ~1 log10 unit at 6 hpi for poliovirus. However, virus titers were nearly indistinguishable from those of control cells by the end of the infectious cycle. We determined that this was not the result of an alternative source of VPg unlinkase activity being activated in the absence of TPD2 at late times of infection. Viral protein production in TDP2 KO cells was also substantially reduced at 4 hpi for poliovirus infection, consistent with the observed growth kinetics delay, but reached normal levels by 6 hpi. Interestingly, this result differs somewhat from what has been reported previously for the TDP2 KO mouse cell model, suggesting that either cell type or species-specific differences might be playing a role in the observed phenotype. We also determined that catalytically inactive TDP2 does not rescue the growth defect, confirming that TDP2 5' phosphodiesterase activity is required for efficient virus replication. Importantly, we show for the first time that polysomes can assemble efficiently on VPg-linked RNA after the initial round of translation in a cell culture model, but both positive and negative strand RNA production is impaired in the absence of TDP2 at mid-times of infection, indicating that the presence of VPg on the viral RNA affects a step in the replication cycle downstream of translation (e.g., RNA synthesis). In agreement with this conclusion, we found that double-stranded RNA production (a marker of viral RNA synthesis) is delayed in TDP2 KO RPE-1 cells. Moreover, we show that premature encapsidation of nascent, VPg-linked RNA is not responsible for the observed virus growth defect. Our studies provide the first lines of evidence to suggest that either negative- or positive-strand RNA synthesis (or both) is a likely candidate for the step that requires the removal of VPg from the RNA for an enterovirus infection to proceed efficiently.


Asunto(s)
Proteínas de Unión al ADN/genética , Hidrolasas Diéster Fosfóricas/genética , Infecciones por Picornaviridae/virología , Picornaviridae/genética , Sistemas CRISPR-Cas , Línea Celular , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/virología , Técnicas de Inactivación de Genes , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Picornaviridae/crecimiento & desarrollo , Polirribosomas/inmunología , ARN Bicatenario/genética , ARN Viral/genética , Retina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA