Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(10): 2287-2314, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38619366

RESUMEN

The physiological mechanisms determining the progressive decline in the maximal muscle torque production capacity during isometric contractions to task failure are known to depend on task demands. Task-specificity of the associated adjustments in motor unit discharge rate (MUDR), however, remains unclear. This study examined MUDR adjustments during different submaximal isometric knee extension tasks to failure. Participants performed a sustained and an intermittent task at 20% and 50% of maximal voluntary torque (MVT), respectively (Experiment 1). High-density surface EMG signals were recorded from vastus lateralis (VL) and medialis (VM) and decomposed into individual MU discharge timings, with the identified MUs tracked from recruitment to task failure. MUDR was quantified and normalised to intervals of 10% of contraction time (CT). MUDR of both muscles exhibited distinct modulation patterns in each task. During the 20% MVT sustained task, MUDR decreased until ∼50% CT, after which it gradually returned to baseline. Conversely, during the 50% MVT intermittent task, MUDR remained stable until ∼40-50% CT, after which it started to continually increase until task failure. To explore the effect of contraction intensity on the observed patterns, VL and VM MUDR was quantified during sustained contractions at 30% and 50% MVT (Experiment 2). During the 30% MVT sustained task, MUDR remained stable until ∼80-90% CT in both muscles, after which it continually increased until task failure. During the 50% MVT sustained task the increase in MUDR occurred earlier, after ∼70-80% CT. Our results suggest that adjustments in MUDR during submaximal isometric contractions to failure are contraction modality- and intensity-dependent. KEY POINTS: During prolonged muscle contractions a constant motor output can be maintained by recruitment of additional motor units and adjustments in their discharge rate. Whilst contraction-induced decrements in neuromuscular function are known to depend on task demands, task-specificity of motor unit discharge behaviour adjustments is still unclear. In this study, we tracked and compared discharge activity of several concurrently active motor units in the vastii muscles during different submaximal isometric knee extension tasks to failure, including intermittent vs. sustained contraction modalities performed in the same intensity domain (Experiment 1), and two sustained contractions performed at different intensities (Experiment 2). During each task, motor units modulated their discharge rate in a distinct, biphasic manner, with the modulation pattern depending on contraction intensity and modality. These results provide insight into motoneuronal adjustments during contraction tasks posing different demands on the neuromuscular system.


Asunto(s)
Contracción Isométrica , Humanos , Contracción Isométrica/fisiología , Masculino , Adulto , Femenino , Torque , Adulto Joven , Músculo Esquelético/fisiología , Neuronas Motoras/fisiología , Electromiografía , Músculo Cuádriceps/fisiología , Reclutamiento Neurofisiológico/fisiología
2.
J Physiol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058666

RESUMEN

Acute intermittent hypoxia (AIH) is an emerging technique for enhancing neuroplasticity and motor function in respiratory and limb musculature. Thus far, AIH-induced improvements in strength have been reported for upper and lower limb muscles after chronic incomplete cervical spinal cord injury (iSCI), but the underlying mechanisms have been elusive. We used high-density surface EMG (HDsEMG) to determine if motor unit discharge behaviour is altered after 15 × 60 s exposures to 9% inspired oxygen, interspersed with 21% inspired oxygen (AIH), compared to breathing only 21% air (SHAM). We recorded HDsEMG from the biceps and triceps brachii of seven individuals with iSCI during maximal elbow flexion and extension contractions, and motor unit spike trains were identified using convolutive blind source separation. After AIH, elbow flexion and extension torque increased by 54% and 59% from baseline (P = 0.003), respectively, whereas there was no change after SHAM. Across muscles, motor unit discharge rates increased by ∼4 pulses per second (P = 0.002) during maximal efforts, from before to after AIH. These results suggest that excitability and/or activation of spinal motoneurons is augmented after AIH, providing a mechanism to explain AIH-induced increases in voluntary strength. Pending validation, AIH may be helpful in conjunction with other therapies to enhance rehabilitation outcomes after incomplete spinal cord injury, due to these enhancements in motor unit function and strength. KEY POINTS: Acute intermittent hypoxia (AIH) causes increases in muscular strength and neuroplasticity in people living with chronic incomplete spinal cord injury (SCI), but how it affects motor unit discharge rates is unknown. Motor unit spike times were identified from high-density surface electromyograms during maximal voluntary contractions and tracked from before to after AIH. Motor unit discharge rates were increased following AIH. These findings suggest that AIH can facilitate motoneuron function in people with incomplete SCI.

3.
Eur J Appl Physiol ; 124(7): 1979-1990, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366213

RESUMEN

PURPOSE: The purpose of this study was to compare laterality in motor unit firing behavior between females and males. METHODS: Twenty-seven subjects (14 females) were recruited for this study. The participants performed ramp up and hold isometric index finger abduction at 10, 30, and 60% of their maximum voluntary contraction (MVC). High-density surface electromyography (HD-sEMG) signals were recorded in the first dorsal interosseous (FDI) muscle and decomposed into individual motor unit (MU) firing behavior using a convolution blind source separation method. RESULTS: In total, 769 MUs were detected (females, n = 318 and males, n = 451). Females had a significantly higher discharge rate than males at each relative torque level (10%: male dominant hand, 13.4 ± 2.7 pps vs. female dominant hand, 16.3 ± 3.4 pps; 30%: male dominant hand, 16.1 ± 3.9 pps vs. female dominant hand, 20.0 ± 5.0 pps; and 60%: male dominant hand, 19.3 ± 3.8 vs. female dominant hand, 25.3 ± 4.8 pps; p < 0.0001). The recruitment threshold was also significantly higher in females than in males at 30 and 60% MVC. Furthermore, males exhibited asymmetrical discharge rates at 30 and 60% MVC and recruitment thresholds at 30 and 60% MVC, whereas no asymmetry was observed in females. CONCLUSION: In the FDI muscle, compared to males, females exhibited different neuromuscular strategies with higher discharge rates and recruitment thresholds and no asymmetrical MU firing behavior. Notably, the findings that sex differences in neuromuscular activity also occur in healthy individuals provide important information for understanding the pathogenesis of various diseases.


Asunto(s)
Lateralidad Funcional , Músculo Esquelético , Reclutamiento Neurofisiológico , Humanos , Masculino , Femenino , Músculo Esquelético/fisiología , Adulto , Lateralidad Funcional/fisiología , Reclutamiento Neurofisiológico/fisiología , Electromiografía , Neuronas Motoras/fisiología , Caracteres Sexuales , Adulto Joven , Contracción Muscular/fisiología , Contracción Isométrica/fisiología
4.
Eur J Appl Physiol ; 124(6): 1645-1658, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193908

RESUMEN

The aim of the present study was to investigate the acute effect of caffeine or quercetin ingestion on motor unit firing patterns and muscle contractile properties before and after resistance exercise. High-density surface electromyography (HDs-EMG) during submaximal contractions and electrically elicited torque in knee extensor muscles were measured before (PRE) and 60 min after (POST1) ingestion of caffeine, quercetin glycosides, or placebo, and after resistance exercise (POST2) in ten young males. The Convolution Kernel Compensation technique was used to identify individual motor units of the vastus lateralis muscle for the recorded HDs-EMG. Ingestion of caffeine or quercetin induced significantly greater decreases in recruitment thresholds (RTs) from PRE to POST1 compared with placebo (placebo: 94.8 ± 9.7%, caffeine: 84.5 ± 16.2%, quercetin: 91.9 ± 36.7%), and there were significant negative correlations between the change in RTs (POST1-PRE) and RT at PRE for caffeine (rs = - 0.448, p < 0.001) and quercetin (rs = - 0.415, p = 0.003), but not placebo (rs = - 0.109, p = 0.440). Significant positive correlations between the change in firing rates (POST2-POST1) and RT at PRE were noted with placebo (rs = 0.380, p = 0.005) and quercetin (rs = 0.382, p = 0.007), but not caffeine (rs = 0.069, p = 0.606). No significant differences were observed in electrically elicited torque among the three conditions. These results suggest that caffeine or quercetin ingestion alters motor unit firing patterns after resistance exercise in different threshold-dependent manners in males.


Asunto(s)
Cafeína , Músculo Esquelético , Quercetina , Entrenamiento de Fuerza , Humanos , Cafeína/farmacología , Cafeína/administración & dosificación , Masculino , Quercetina/farmacología , Entrenamiento de Fuerza/métodos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Adulto Joven , Contracción Muscular/efectos de los fármacos , Adulto , Neuronas Motoras/fisiología , Neuronas Motoras/efectos de los fármacos , Electromiografía
5.
Eur J Appl Physiol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110159

RESUMEN

PURPOSE: The aim of this study was to examine the effect of vibration on motor unit (MU) firing behavior and physical performance of antagonist muscles in healthy young adult males. METHODS: Fourteen males (age = 24.3 ± 3.6 years) were included in this study. There were two conditions, one in which participants received 80 Hz vibration in the distal tendon of the hamstring for 30 s and the control condition (no vibration). High-density surface electromyography (HD-SEMG) signals and maximal voluntary contraction (MVC) of knee extensor muscles were evaluated before and after the respective conditions and recorded from the vastus lateralis muscle during submaximal ramp-up and sustained contractions at 30% MVC. Convolution blind source separation was used to decompose the HD-SEMG signals into individual MU firing behaviors. RESULTS: In total, 739 MUs were detected (control; 360 MUs and vibration; 379 MUs), and a total of 312 matched MUs were identified across both submaximal contraction conditions (control: 150 MUs; vibration: 162 MUs). Vibration significantly increased the discharge rate (p = 0.047) and decreased the recruitment threshold before and after intervention (p = 0.001) but not in the control condition. Furthermore, the recruitment threshold is a factor that influences discharge rate. Significant correlations were observed between the recruitment threshold and both the ∆ discharge rate and the ∆ recruitment threshold under the vibration condition (p < 0.001). CONCLUSION: Vibration increased in the discharge rate and decreased the recruitment threshold of the antagonist muscle. These findings suggested that vibration contributes to immediate changes in the neural control of antagonist muscles.

6.
J Physiol ; 601(10): 1719-1744, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946417

RESUMEN

We describe a novel application of methodology for high-density surface electromyography (HDsEMG) decomposition to identify motor unit (MU) firings in response to transcranial magnetic stimulation (TMS). The method is based on the MU filter estimation from HDsEMG decomposition with convolution kernel compensation during voluntary isometric contractions and its application to contractions elicited by TMS. First, we simulated synthetic HDsEMG signals during voluntary contractions followed by simulated motor evoked potentials (MEPs) recruiting an increasing proportion of the motor pool. The estimation of MU filters from voluntary contractions and their application to elicited contractions resulted in high (>90%) precision and sensitivity of MU firings during MEPs. Subsequently, we conducted three experiments in humans. From HDsEMG recordings in first dorsal interosseous and tibialis anterior muscles, we demonstrated an increase in the number of identified MUs during MEPs evoked with increasing stimulation intensity, low variability in the MU firing latency and a proportion of MEP energy accounted for by decomposition similar to voluntary contractions. A negative relationship between the MU recruitment threshold and the number of identified MU firings was exhibited during the MEP recruitment curve, suggesting orderly MU recruitment. During isometric dorsiflexion we also showed a negative association between voluntary MU firing rate and the number of firings of the identified MUs during MEPs, suggesting a decrease in the probability of MU firing during MEPs with increased background MU firing rate. We demonstrate accurate identification of a large population of MU firings in a broad recruitment range in response to TMS via non-invasive HDsEMG recordings. KEY POINTS: Transcranial magnetic stimulation (TMS) of the scalp produces multiple descending volleys, exciting motor pools in a diffuse manner. The characteristics of a motor pool response to TMS have been previously investigated with intramuscular electromyography (EMG), but this is limited in its capacity to detect many motor units (MUs) that constitute a motor evoked potential (MEP) in response to TMS. By simulating synthetic signals with known MU firing patterns, and recording high-density EMG signals from two human muscles, we show the feasibility of identifying firings of many MUs that comprise a MEP. We demonstrate the identification of firings of a large population of MUs in the broad recruitment range, up to maximal MEP amplitude, with fewer required stimuli compared to intramuscular EMG recordings. The methodology demonstrates an emerging possibility to study responses to TMS on a level of individual MUs in a non-invasive manner.


Asunto(s)
Músculo Esquelético , Estimulación Magnética Transcraneal , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Potenciales Evocados Motores , Contracción Muscular/fisiología
7.
Eur J Neurosci ; 58(9): 4011-4033, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37840191

RESUMEN

Spinal motoneuron firing depends greatly on persistent inward currents (PICs), which in turn are facilitated by the neuromodulators serotonin and noradrenaline. The aim of this study was to determine whether jaw clenching (JC) and mental stress (MS), which may increase neuromodulator release, facilitate PICs in human motoneurons. The paired motor unit (MU) technique was used to estimate PIC contribution to motoneuron firing. Surface electromyograms were collected using a 32-channel matrix on gastrocnemius medialis (GM) during voluntary, ramp, plantar flexor contractions. MU discharges were identified, and delta frequency (ΔF), a measure of recruitment-derecruitment hysteresis, was calculated. Additionally, another technique was used (VibStim) that evokes involuntary contractions that persist after cessation of combined Achilles tendon vibration and triceps surae neuromuscular electrical stimulation. VibStim measures of plantar flexor torque and soleus activity may reflect PIC activation. ΔF was not significantly altered by JC (p = .679, n = 18, 9 females) or MS (p = .147, n = 14, 5 females). However, all VibStim variables quantifying involuntary torque and muscle activity during and after vibration cessation were significantly increased in JC (p < .011, n = 20, 10 females) and some, but not all, increased in MS (p = .017-.05, n = 19, 10 females). JC and MS significantly increased the magnitude of involuntary contractions (VibStim) but had no effect on GM ΔF during voluntary contractions. Effects of increased neuromodulator release on PIC contribution to motoneuron firing might differ between synergists or be context dependent. Based on these data, the background level of voluntary contraction and, hence, both neuromodulation and ionotropic inputs could influence neuromodulatory PIC enhancement.


Asunto(s)
Neuronas Motoras , Músculo Esquelético , Femenino , Humanos , Músculo Esquelético/fisiología , Electromiografía , Neuronas Motoras/fisiología , Norepinefrina/farmacología , Neurotransmisores/farmacología
8.
Exp Brain Res ; 241(4): 1009-1019, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36905448

RESUMEN

Neural and morphological adaptations determine gains of muscle strength. For youth athletes, the importance of morphological adaptation is typically highlighted based on the change in maturity status. However, the long-term development of neural components in youth athletes remains unclear. The present study investigated the longitudinal development of muscle strength, muscle thickness (MT), and motor unit firing activity of the knee extensor and their relationships in youth athletes. Seventy male youth soccer players (mean ± SD age = 16.3 ± 0.6 years) performed neuromuscular, maximal voluntary isometric contraction (MVC), and submaximal ramp contraction (at 30 and 50% MVC) tests with knee extensors, two times with a 10-month measurement interval. High-density surface electromyography was recorded from the vastus lateralis and decomposed to identify each individual motor unit activity. MT was evaluated by the sum of the vastus lateralis and vastus intermedius thicknesses. Finally, sixty-four participants were employed to compare MVC and MT, and 26 participants were employed to analyze motor unit activity. MVC and MT were increased from pre to post (p < 0.05, 6.9 and 1.7% for MVC and MT, respectively). Y-intercept of the regression line between median firing rate vs. recruitment threshold was also increased (p < 0.05, 13.3%). Multiple regression analysis demonstrated that the gains of both MT and Y-intercept were explanatory variables for the gain of strength. These findings suggest that the neural adaptation could also make the important contribution to the strength gain for the youth athletes over a 10-month training period.


Asunto(s)
Fuerza Muscular , Músculo Cuádriceps , Humanos , Masculino , Adolescente , Músculo Cuádriceps/fisiología , Electromiografía , Contracción Isométrica/fisiología , Articulación de la Rodilla , Músculo Esquelético/fisiología
9.
J Sports Sci Med ; 22(2): 245-253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293414

RESUMEN

The aim of the study was to assess the influence of habitual training history on force steadiness and the discharge characteristics of motor units in tibialis anterior during submaximal isometric contractions. Fifteen athletes whose training emphasized alternating actions (11 runners and 4 cyclists) and fifteen athletes who relied on bilateral actions with leg muscles (7 volleyball players, 8 weight-lifters) performed 2 maximal voluntary contractions (MVC) with the dorsiflexors, and 3 steady contractions at 8 target forces (2.5%, 5%, 10%, 20%, 30%, 40%, 50% and 60% MVC). The discharge characteristics of motor units in tibialis anterior were recorded using high-density electromyography grids. The MVC force and the absolute (standard deviation) and normalized (coefficient of variation) amplitudes of the force fluctuations at all target forces were similar between groups. The coefficient of variation for force decreased progressively from 2.5% to 20% MVC force, then it plateaued until 60% MVC force. Mean discharge rate of the motor units in tibialis anterior was similar at all target forces between groups. The variability in discharge times (coefficient of variation for interspike interval) and the variability in neural drive (coefficient of variation of filtered cumulative spike train) was also similar for the two groups. These results indicate that athletes who have trained with either alternating or bilateral actions with leg muscles has similar effects on maximal force, force control, and variability in the independent and common synaptic input during a single-limb isometric task with the dorsiflexors.


Asunto(s)
Pierna , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Electromiografía , Contracción Isométrica/fisiología , Ejercicio Físico
10.
J Physiol ; 600(11): 2765-2787, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35436349

RESUMEN

Persistent inward currents (PICs) are crucial for initiation, acceleration, and maintenance of motoneuron firing. As PICs are highly sensitive to synaptic inhibition and facilitated by serotonin and noradrenaline, we hypothesised that both reciprocal inhibition (RI) induced by antagonist nerve stimulation and whole-body relaxation (WBR) would reduce PICs in humans. To test this, we estimated PICs using the well-established paired motor unit (MU) technique. High-density surface electromyograms were recorded from gastrocnemius medialis during voluntary, isometric 20-s ramp, plantarflexor contractions and decomposed into MU discharges to calculate delta frequency (ΔF). Moreover, another technique (VibStim), which evokes involuntary contractions proposed to result from PIC activation, was used. Plantarflexion torque and soleus activity were recorded during 33-s Achilles tendon vibration and simultaneous 20-Hz bouts of neuromuscular electrical stimulation (NMES) of triceps surae. ΔF was decreased by RI (n = 15, 5 females) and WBR (n = 15, 7 females). In VibStim, torque during vibration at the end of NMES and sustained post-vibration torque were reduced by WBR (n = 19, 10 females), while other variables remained unchanged. All VibStim variables remained unaltered in RI (n = 20, 10 females). Analysis of multiple human MUs in this study demonstrates the ability of local, focused inhibition to attenuate the effects of PICs on motoneuron output during voluntary motor control. Moreover, it shows the potential to reduce PICs through non-pharmacological, neuromodulatory interventions such as WBR. The absence of a consistent effect in VibStim might be explained by a floor effect resulting from low-magnitude involuntary torque combined with the negative effects of the interventions. KEY POINTS: Spinal motoneurons transmit signals to skeletal muscles to regulate their contraction. Motoneuron firing partly depends on their intrinsic properties such as the strength of persistent (long-lasting) inward currents (PICs) that make motoneurons more responsive to excitatory input. In this study, we demonstrate that both reciprocal inhibition onto motoneurons and whole-body relaxation reduce the contribution of PICs to human motoneuron firing. This was observed through analysis of the firing of single motor units during voluntary contractions. However, an alternative technique that involves tendon vibration and neuromuscular electrical stimulation to evoke involuntary contractions showed less effect. Thus, it remains unclear whether this alternative technique can be used to estimate PICs under all physiological conditions. These results improve our understanding of the mechanisms of PIC depression in human motoneurons. Potentially, non-pharmacological interventions such as electrical stimulation or relaxation could attenuate unwanted PIC-induced muscle contractions in conditions characterised by motoneuron hyperexcitability.


Asunto(s)
Neuronas Motoras , Contracción Muscular , Electromiografía/métodos , Femenino , Humanos , Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Torque
11.
J Neurophysiol ; 127(2): 421-433, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020505

RESUMEN

This study aimed to determine whether neural drive is redistributed between muscles during a fatiguing isometric contraction, and if so, whether the initial level of common synaptic input between these muscles constrains this redistribution. We studied two muscle groups: triceps surae (14 participants) and quadriceps (15 participants). Participants performed a series of submaximal isometric contractions and a torque-matched contraction maintained until task failure. We used high-density surface electromyography to identify the behavior of 1,874 motor units from the soleus, gastrocnemius medialis (GM), gastrocnemius lateralis (GL), rectus femoris, vastus lateralis (VL), and vastus medialis (VM). We assessed the level of common drive between muscles in the absence of fatigue using a coherence analysis. We also assessed the redistribution of neural drive between muscles during the fatiguing contraction through the correlation between their cumulative spike trains (index of neural drive). The level of common drive between VL and VM was significantly higher than that observed for the other muscle pairs, including GL-GM. The level of common drive increased during the fatiguing contraction, but the differences between muscle pairs persisted. We also observed a strong positive correlation of neural drive between VL and VM during the fatiguing contraction (r = 0.82). This was not observed for the other muscle pairs, including GL-GM, which exhibited differential changes in neural drive. These results suggest that less common synaptic input between muscles allows for more flexible coordination strategies during a fatiguing task, i.e., differential changes in neural drive across muscles. The role of this flexibility on performance remains to be elucidated.NEW & NOTEWORTHY Redundancy of the neuromuscular system theoretically allows for a redistribution of the neural drive across muscles (i.e., between-muscle compensation) during a fatiguing contraction. Our results suggest that a high level of common input between muscles (e.g., vastus lateralis and medialis) represents a neural constraint making it less likely to redistribute the neural drive across these muscles. In this way, redistribution was only observed across muscles that share little common synaptic input (e.g., gastrocnemius lateralis and medialis).


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Contracción Isométrica/fisiología , Neuronas Motoras/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Electromiografía , Humanos , Adulto Joven
12.
J Neurophysiol ; 128(3): 455-469, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35829632

RESUMEN

Maximal rate of force development in adult humans is determined by the maximal motor unit discharge rate, however, the origin of the underlying synaptic inputs remains unclear. Here, we tested a hypothesis that the maximal motor unit discharge rate will increase in response to a startling cue, a stimulus that purportedly activates the pontomedullary reticular formation neurons that make mono- and disynaptic connections to motoneurons via fast-conducting axons. Twenty-two men were required to produce isometric knee extensor forces "as fast and as hard" as possible from rest to 75% of maximal voluntary force, in response to visual (VC), visual-auditory (VAC; 80 dB), or visual-startling cue (VSC; 110 dB). Motoneuron activity was estimated via decomposition of high-density surface electromyogram recordings over the vastus lateralis and medialis muscles. Reaction time was significantly shorter in response to VSC compared with VAC and VC. The VSC further elicited faster neuromechanical responses including a greater number of discharges per motor unit per second and greater maximal rate of force development, with no differences between VAC and VC. We provide evidence, for the first time, that the synaptic input to motoneurons increases in response to a startling cue, suggesting a contribution of subcortical pathways to maximal motoneuron output in humans.NEW & NOTEWORTHY Motor unit discharge characteristics are a key determinant of rate of force development in humans, but the neural substrate(s) underpinning such output remains unknown. Using decomposition of high-density electromyogram, we show greater number of discharges per motor unit per second and greater rate of force development after a startling auditory stimulus. These observations suggest a possible subcortical contribution to maximal in vivo motor unit discharge rate in adult humans.


Asunto(s)
Neuronas Motoras , Alta del Paciente , Adulto , Electromiografía , Humanos , Contracción Isométrica/fisiología , Articulación de la Rodilla , Masculino , Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología
13.
Exp Physiol ; 107(5): 489-507, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218261

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the association between the fluctuations in various estimates of effective neural drive to the triceps surae muscles and fluctuations in net plantar-flexion torque during steady submaximal contractions? What is the main finding and its importance? The fluctuations in estimates of effective neural drive to the triceps surae were moderately correlated with fluctuations in net torque at light and moderate plantar-flexion torques. Significant variability was observed in the association between neural drive and torque across participants, trials, short epochs of individual contractions and varying motor unit number. ABSTRACT: The influence of effective neural drive on low-frequency fluctuations in torque during steady contractions can be estimated from the cumulative spike train (CST) or first principal component (FPC) of smoothed motor unit discharge rates obtained with high-density electromyography. However, the association between these estimates of total neural drive to synergist muscles and the fluctuations in net torque has not been investigated. We exposed the variability and compared the correlations between estimates of effective neural drive to the triceps surae muscles and fluctuations in plantar-flexion torque during steady contractions at 10% and 35% of maximal voluntary contraction (MVC) torque. Both neural drive estimates were moderately correlated with torque (CST, 0.55 ± 0.14; FPC, 0.58 ± 0.16) and highly correlated with one another (0.81 ± 0.1) during the 30-s steady contractions. There was substantial variability in cross-correlation values across participants, trials, and the 1- and 5-s epochs of single contractions. Moreover, epoch duration significantly influenced cross-correlation values. Motor unit number was weakly associated with cross-correlation strength at 35% MVC (marginal R2 0.09-0.11; all P < 2.2 × 10-5 ), but not at 10% MVC (all P > 0.37). Approximately, one-fifth of the variance in the coefficient of variation (CV) for torque was explained by CV for the CST estimate of the neural drive (P = 6.6 × 10-13 , R2  = 0.21). Estimates of total neural drive to the synergistic triceps surae muscles obtained by pooling motor unit discharge times were moderately correlated with fluctuations in net plantar-flexion torque.


Asunto(s)
Contracción Isométrica , Contracción Muscular , Electromiografía , Humanos , Contracción Isométrica/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Torque
14.
Exp Brain Res ; 240(7-8): 2085-2096, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771284

RESUMEN

In elite fencers, muscle strength and muscle mass of the front leg (FL) are greater than those of the back leg (BL) due to characteristic physiological and biomechanical demands placed on each leg during fencing. However, the development of laterality in their neural and muscular components is not well-understood. The present study investigated neuromuscular characteristics of FL and BL in junior fencers. Nineteen junior fencers performed neuromuscular performance tests for FL and BL, separately. There were no significant differences in the isometric knee extension strength (MVC), unilateral vertical jump (UVJ), vastus lateralis muscle thickness (MT), or motor unit firing rate of the vastus lateralis muscle (MUFR) between FL and BL (p > 0.05). In subgroup analyses, a significantly greater MUFR in FL than BL was noted only in fencers with > 3 years of fencing experience, and significantly greater UVJ in FL than BL was observed solely in fencers with < 3 years of fencing experience (p < 0.05). Strong positive correlations between FL and BL were identified in MVC, MT, and MUFR in fencers with > 3 years of fencing experience, but not in those with < 3 years of experience. These findings suggest that in junior fencers, laterality in neuromuscular performance has not manifested, whereas longer fencing experience induces fencing-dependent laterality in neural components, and laterality in dynamic muscle strength is decreased with fencing experience.


Asunto(s)
Pierna , Fuerza Muscular , Lateralidad Funcional/fisiología , Humanos , Rodilla , Articulación de la Rodilla , Pierna/fisiología , Fuerza Muscular/fisiología
15.
J Neurophysiol ; 126(5): 1653-1659, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669517

RESUMEN

Different neurophysiological strategies are used to perform angle adjustments during motor tasks such as car driving and force-control tasks using a fixed-rigid pedal. However, the difference in motor unit behavior in response to an increasing exerted force between tasks is unknown. This study aimed to investigate the difference in motor unit responsiveness on increasing force between force and position tasks. Twelve healthy participants performed ramp and hold contractions during ankle plantarflexion at 20% and 30% of the maximal voluntary contraction using a rigid pedal (force task) and a free pedal with an inertial load (position task). High-density surface electromyograms were recorded of the medial gastrocnemius muscle and decomposed into individual motor unit firing patterns. Ninety and hundred and nine motor units could be tracked between different target torques in each task. The mean firing rate increased and firing rate variability decreased on 10% maximal voluntary contraction force gain during both force and position tasks. There were no significant differences in these responses between the two tasks. Our results suggest that the motor unit firing rate is similarly regulated between force and position tasks in the medial gastrocnemius muscle with an increase in the exerted force.NEW & NOTEWORTHY Different neurophysiological strategies are used to perform a force control task and angle adjustment task. Our results showed that motor unit firing rate is similarly regulated between the two tasks in the medial gastrocnemius muscle with an increase in the exerted force. Although it is reported that position tasks contribute to early fatigue, it does not seem to be a particular problem for the increase in force.


Asunto(s)
Actividad Motora/fisiología , Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Reclutamiento Neurofisiológico/fisiología , Adulto , Electromiografía , Femenino , Humanos , Pierna/fisiología , Masculino , Adulto Joven
16.
Eur J Neurosci ; 53(6): 1938-1949, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33377245

RESUMEN

Patients with Parkinson's disease (PD) have greater laterality of muscle contraction properties than other people with parkinsonism diseases. However, few studies have reported the laterality of MU activation properties of the lower extremity muscles in patients with PD. The aim of the present study was to identify the laterality of MU behavior in PD patients using high-density surface electromyography (HD-SEMG). Eleven female patients with PD (age, 69.2 ± 6.2 years, disease duration, 2.7 ± 0.9 years, Unified Parkinson's disease Rating Scale score, 13 (9-16)), and 9 control female subjects (age, 66.8 ± 3.5 years) were enrolled in the present study. All subjects performed a sustained isometric knee extension in a 30% maximal voluntary contraction (MVC) task for 20 s. HD-SEMG signals were used to record and extract single MU firing behavior in the vastus lateralis muscle during submaximal isometric knee extensor contractions with 64 electrodes and decomposed with the convolution kernel compensation technique to extract individuals MUs. Compared to the control subjects, the patients with PD exhibited laterality of the MU firing rate and an absence of a relationship between the mean MU firing rate and MU threshold. Patients with PD exhibit laterality of MU behavior and experience MU behavioral abnormalities even with mild symptoms such as Hoehn & Yahr stage ≤ 3 and disease duration = 2.7 ± 0.9. These findings suggest the importance of considering the detection of abnormal muscle properties in PD patients beginning in the early phase of the disease.


Asunto(s)
Enfermedad de Parkinson , Reclutamiento Neurofisiológico , Potenciales de Acción , Anciano , Electromiografía , Femenino , Humanos , Contracción Isométrica , Persona de Mediana Edad , Músculo Esquelético , Músculo Cuádriceps
17.
Exp Brain Res ; 239(5): 1567-1579, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33742251

RESUMEN

Quercetin is a polyphenolic flavonoid that has reported to block the binding of adenosine to A1 receptors at central nervous system and increase calcium release from the sarcoplasmic reticulum at skeletal muscle. The aim of the present study was to investigate the acute effect of quercetin ingestion on motor unit activation and muscle contractile properties. High-density surface electromyography during submaximal contractions and electrically elicited contraction torque in knee extensor muscles were measured before (PRE) and 60 min after (POST) quercetin glycosides or placebo ingestions in 13 young males. Individual motor units of the vastus lateralis muscle were identified from high-density surface electromyography by the Convolution Kernel Compensation technique. Firing rates of motor units recruited at 30-50% of the maximal voluntary contraction torque (MVC) were increased from PRE to POST only with quercetin (9.0 ± 2.3 to 10.5 ± 2.0 pps, p = 0.034). Twitch torque during doublet stimulation was decreased from PRE to POST with placebo (77.1 ± 17.1 to 73.9 ± 17.6 Nm, p = 0.005), but not with quercetin (p > 0.05). For motor units recruited at < 10% of MVC, normalized firing rate were decreased with quercetin (1.52 ± 0.33 to 1.58 ± 0.35%MVC/pps, p = 0.002) but increased with placebo (1.61 ± 0.32 to 1.57 ± 0.31%MVC/pps, p = 0.005). These results suggest that ingested quercetin has the functional roles to: mitigate reduction in the muscle contractile properties, enhance activations of relatively higher recruitment threshold motor units, and inhibit activation of relatively lower recruitment threshold motor units.


Asunto(s)
Contracción Muscular , Quercetina , Ingestión de Alimentos , Electromiografía , Humanos , Contracción Isométrica , Masculino , Músculo Esquelético , Músculo Cuádriceps , Quercetina/farmacología , Reclutamiento Neurofisiológico
18.
Sensors (Basel) ; 21(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34640935

RESUMEN

The relationship between motor unit (MU) firing behavior and the severity of neurodegeneration in Parkinson's disease (PD) is not clear. This study aimed to elucidate the association between degeneration with dopaminergic pathways and MU firing behavior in people with PD. Fourteen females with PD (age, 72.6 ± 7.2 years, disease duration, 3.5 ± 2.1 years) were enrolled in this study. All participants performed a submaximal, isometric knee extension ramp-up contraction from 0% to 80% of their maximal voluntary contraction strength. We used high-density surface electromyography with 64 electrodes to record the muscle activity of the vastus lateralis muscle and decomposed the signals with the convolution kernel compensation technique to extract the signals of individual MUs. We calculated the degree of degeneration of the central lesion-specific binding ratio by dopamine transporter single-photon emission computed tomography. The primary, novel results were as follows: (1) moderate-to-strong correlations were observed between the degree of degeneration of the central lesion and MU firing behavior; (2) a moderate correlation was observed between clinical measures of disease severity and MU firing behavior; and (3) the methods of predicting central nervous system degeneration from MU firing behavior abnormalities had a high detection accuracy with an area under the curve >0.83. These findings suggest that abnormalities in MU activity can be used to predict central nervous system degeneration following PD.


Asunto(s)
Enfermedad de Parkinson , Anciano , Electromiografía , Femenino , Humanos , Contracción Isométrica , Rodilla , Músculo Cuádriceps
19.
J Physiol ; 597(9): 2445-2456, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768687

RESUMEN

KEY POINTS: We propose and validate a method for accurately identifying the activity of populations of motor neurons during contractions at maximal rate of force development in humans. The behaviour of the motor neuron pool during rapid voluntary contractions in humans is presented. We show with this approach that the motor neuron recruitment speed and maximal motor unit discharge rate largely explains the individual ability in generating rapid force contractions. The results also indicate that the synaptic inputs received by the motor neurons before force is generated dictate human potential to generate force rapidly. This is the first characterization of the discharge behaviour of a representative sample of human motor neurons during rapid contractions. ABSTRACT: During rapid contractions, motor neurons are recruited in a short burst and begin to discharge at high frequencies (up to >200 Hz). In the present study, we investigated the behaviour of relatively large populations of motor neurons during rapid (explosive) contractions in humans, applying a new approach to accurately identify motor neuron activity simultaneous to measuring the rate of force development. The activity of spinal motor neurons was assessed by high-density electromyographic decomposition from the tibialis anterior muscle of 20 men during isometric explosive contractions. The speed of motor neuron recruitment and the instantaneous motor unit discharge rate were analysed as a function of the impulse (the time-force integral) and the maximal rate of force development. The peak of motor unit discharge rate occurred before force generation and discharge rates decreased thereafter. The maximal motor unit discharge rate was associated with the explosive force variables, at the whole population level (r2  = 0.71 ± 0.12; P < 0.001). Moreover, the peak motor unit discharge and maximal rate of force variables were correlated with an estimate of the supraspinal drive, which was measured as the speed of motor unit recruitment before the generation of afferent feedback (P < 0.05). We show for the first time the full association between the effective neural drive to the muscle and human maximal rate of force development. The results obtained in the present study indicate that the variability in the maximal contractile explosive force of the human tibialis anterior muscle is determined by the neural activation preceding force generation.


Asunto(s)
Neuronas Motoras/fisiología , Contracción Muscular , Reclutamiento Neurofisiológico , Potenciales de Acción , Adulto , Electromiografía/métodos , Humanos , Masculino
20.
J Neurophysiol ; 122(5): 2043-2053, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509467

RESUMEN

Pathological tremor is an oscillation of body parts at 3-10 Hz, determined by the output of spinal motor neurons (MNs), which receive synaptic inputs from supraspinal centers and muscle afferents. The behavior of spinal MNs during tremor is not well understood, especially in relation to the activation of the multiple muscles involved. Recent studies on patients with essential tremor have shown that antagonist MN pools receive shared input at the tremor frequency. In this study, we investigated the synaptic inputs related to tremor and voluntary movement, and their coordination across antagonist muscles. We analyzed the spike trains of motor units (MUs) identified from high-density surface electromyography from the forearm extensor and flexor muscles in 15 patients with essential tremor during postural tremor. The shared synaptic input was quantified by coherence and phase difference analysis of the spike trains. All pairs of spike trains in each muscle showed coherence peaks at the voluntary drive frequency (1-3 Hz, 0.2 ± 0.2, mean ± SD) and tremor frequency (3-10 Hz, 0.6 ± 0.3) and were synchronized with small phase differences (3.3 ± 25.2° and 3.9 ± 22.0° for the voluntary drive and tremor frequencies, respectively). The coherence between MN spike trains of antagonist muscle groups at the tremor frequency was significantly smaller than intramuscular coherence. We predominantly observed in-phase activation of MUs between agonist/antagonist muscles at the voluntary frequency band (0.6 ± 48.8°) and out-of-phase activation at the tremor frequency band (126.9 ± 75.6°). Thus MNs innervating agonist/antagonist muscles concurrently receive synaptic inputs with different phase shifts in the voluntary and tremor frequency bands.NEW & NOTEWORTHY Although the mechanical characteristics of tremor have been widely studied, the activation of the affected muscles is still poorly understood. We analyzed the behavior of motor units of pairs of antagonistic wrist muscle groups in patients with essential tremor and studied their activity at voluntary movement- and tremor-related frequencies. We found that the phase relation between inputs to antagonistic muscles is different at the voluntary and tremor frequency bands.


Asunto(s)
Temblor Esencial/fisiopatología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/fisiopatología , Anciano , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA