Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rep Prog Phys ; 87(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215499

RESUMEN

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

2.
Phys Rev Lett ; 132(16): 162502, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701465

RESUMEN

The nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤60 MeV, which agrees with complementary observables.

4.
Phys Rev Lett ; 133(13): 132503, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39392966

RESUMEN

High-precision mass measurements of exotic ^{95-97}Ag isotopes close to the N=Z line have been conducted with the JYFLTRAP double Penning trap mass spectrometer, with the silver ions produced using the recently commissioned inductively heated hot cavity catcher laser ion source at the Ion Guide Isotope Separator On-Line facility. The atomic mass of ^{95}Ag was directly determined for the first time. In addition, the atomic masses of ß-decaying 2^{+} and 8^{+} states in ^{96}Ag have been identified and measured for the first time, and the precision of the ^{97}Ag mass has been improved. The newly measured masses, with a precision of ≈1 keV/c^{2}, have been used to investigate the N=50 neutron shell closure, confirming it to be robust. Empirical shell-gap and pairing energies determined with the new ground-state mass data are compared with the state-of-the-art ab initio calculations with various chiral effective field theory Hamiltonians. The precise determination of the excitation energy of the ^{96m}Ag isomer in particular serves as a benchmark for ab initio predictions of nuclear properties beyond the ground state, specifically for odd-odd nuclei situated in proximity to the proton dripline below ^{100}Sn. In addition, density functional theory calculations and configuration-interaction shell-model calculations are compared with the experimental results. All theoretical approaches face challenges to reproduce the trend of nuclear ground-state properties in the silver isotopic chain across the N=50 neutron shell and toward the proton dripline.

5.
Phys Rev Lett ; 131(10): 102501, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739365

RESUMEN

Charge radii of neutron deficient ^{40}Sc and ^{41}Sc nuclei were determined using collinear laser spectroscopy. With the new data, the chain of Sc charge radii extends below the neutron magic number N=20 and shows a pronounced kink, generally taken as a signature of a shell closure, but one notably absent in the neighboring Ca, K, and Ar isotopic chains. Theoretical models that explain the trend at N=20 for the Ca isotopes cannot reproduce this puzzling behavior.

6.
Mol Ther ; 30(9): 2909-2922, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35581938

RESUMEN

Persistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome. Transient ARCUS-POL expression in HBV-infected primary human hepatocytes produced substantial reductions in both cccDNA and hepatitis B surface antigen (HBsAg). To evaluate ARCUS-POL in vivo, we developed episomal adeno-associated virus (AAV) mouse and non-human primate (NHP) models containing a portion of the HBV genome serving as a surrogate for cccDNA. Clinically relevant delivery was achieved through systemic administration of lipid nanoparticles containing ARCUS-POL mRNA. In both mouse and NHP, we observed a significant decrease in total AAV copy number and high on-target indel frequency. In the case of the mouse model, which supports HBsAg expression, circulating surface antigen was durably reduced by 96%. Together, these data support a gene-editing approach for elimination of cccDNA toward an HBV cure.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Animales , Antivirales , ADN Circular/genética , ADN Viral/genética , Dependovirus/genética , Hepatitis B/terapia , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/uso terapéutico , Virus de la Hepatitis B/genética , Humanos , Liposomas , Ratones , Nanopartículas , Replicación Viral
7.
Phys Rev Lett ; 129(13): 132501, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36206412

RESUMEN

Nuclear charge radii of ^{55,56}Ni were measured by collinear laser spectroscopy. The obtained information completes the behavior of the charge radii at the shell closure of the doubly magic nucleus ^{56}Ni. The trend of charge radii across the shell closures in calcium and nickel is surprisingly similar despite the fact that the ^{56}Ni core is supposed to be much softer than the ^{48}Ca core. The very low magnetic moment µ(^{55}Ni)=-1.108(20) µ_{N} indicates the impact of M1 excitations between spin-orbit partners across the N,Z=28 shell gaps. Our charge-radii results are compared to ab initio and nuclear density functional theory calculations, showing good agreement within theoretical uncertainties.

8.
Bioorg Med Chem Lett ; 47: 128113, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991628

RESUMEN

Through an internal virtual screen at GlaxoSmithKline a distinct class of 2-phenylimidazo[1,2-a]pyridine-6-carboxamide H-PGDS inhibitors were discovered. Careful evaluation of crystal structures and SAR led to a novel, potent, and orally active imidazopyridine inhibitor of H-PGDS, 20b. Herein, describes the identification of 2 classes of inhibitors, their syntheses, and their challenges.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Estructura Molecular , Relación Estructura-Actividad
9.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33059303

RESUMEN

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Asunto(s)
Compuestos Aza/química , Inhibidores Enzimáticos/química , Quinolinas/química , Animales , Sitios de Unión , Encéfalo/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Ratas , Relación Estructura-Actividad
10.
Bioorg Med Chem ; 27(8): 1456-1478, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30858025

RESUMEN

With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50 = 220,000 nM, LE = 0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50 = 3,100 nM, LE = 0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50 = 9.9 nM, LE = 0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Lipocalinas/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacología , Animales , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacocinética , Humanos , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Quinolinas/farmacocinética
11.
Glob Chang Biol ; 20(12): 3845-58, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24942916

RESUMEN

Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services.


Asunto(s)
Cambio Climático , Dinoflagelados/crecimiento & desarrollo , Ecosistema , Predicción/métodos , Floraciones de Algas Nocivas/fisiología , Modelos Biológicos , Geografía , Océanos y Mares , Movimientos del Agua
12.
Glob Chang Biol ; 20(7): 2124-39, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24604761

RESUMEN

Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.


Asunto(s)
Biomasa , Cambio Climático , Océanos y Mares , Plancton/fisiología , Animales , Ecosistema , Cadena Alimentaria , Modelos Teóricos , Temperatura
13.
Sci Total Environ ; 912: 168938, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029982

RESUMEN

Terrigenous carbon in aquatic systems is increasingly recognised as an important part of the global carbon cycle. Despite this, the fate and distribution of terrigenous dissolved organic carbon (tDOC) in coastal and oceanic systems is poorly understood. We have implemented a theoretical framework for the degradation of tDOC across the land to ocean continuum in a 3D hydrodynamical-biogeochemical model on the North West European Shelf. A key feature of this model is that both photochemical and bacterial tDOC degradation rates are age dependant constituting an advance in our ability to describe carbon cycling in the marine environment. Over the time period 1986-2015, 182±17 Gmol yr-1 of riverine tDOC is input to the shelf. Results indicate that bacterial degradation is by far the most important process in removing tDOC on the shelf, contributing to 73±6 % (132±11 Gmol yr-1) of the total removal flux, while 21±3 % (39±6 Gmol yr-1) of riverine tDOC was advected away from the shelf and photochemical degradation removing 5±0.5 % of the riverine flux. Explicitly including tDOC in the model decreased the air-sea carbon dioxide (CO2) flux by 112±8 Gmol yr-1 (4±0.4 %), an amount approximately equivalent to the CO2 released by the UK chemical industry in 2020. The reduction is equivalent to 62 % of the riverine tDOC input to the shelf while approximately 17 % of riverine input is incorporated into the foodweb. This work can improve the assumptions of the fate of tDOC by Earth System Models and demonstrates that the inclusion of tDOC in models can impact ecosystem dynamics and change predicted global carbon budgets for the ocean.

14.
Nat Phys ; 20(1): 169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239896

RESUMEN

[This corrects the article DOI: 10.1038/s41567-022-01715-8.].

15.
Phys Rev Lett ; 110(1): 012501, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23383782

RESUMEN

In anticipation of results from current and future double-ß decay studies, we report a measurement resulting in a (82)Se double-ß decay Q value of 2997.9(3) keV, an order of magnitude more precise than the currently accepted value. We also present preliminary results of a calculation of the (82)Se neutrinoless double-ß decay nuclear matrix element that corrects in part for the small size of the shell model single-particle space. The results of this work are important for designing next generation double-ß decay experiments and for the theoretical interpretations of their observations.

16.
Nat Phys ; 18(10): 1196-1200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36217363

RESUMEN

Heavy atomic nuclei have an excess of neutrons over protons, which leads to the formation of a neutron skin whose thickness is sensitive to details of the nuclear force. This links atomic nuclei to properties of neutron stars, thereby relating objects that differ in size by orders of magnitude. The nucleus 208Pb is of particular interest because it exhibits a simple structure and is experimentally accessible. However, computing such a heavy nucleus has been out of reach for ab initio theory. By combining advances in quantum many-body methods, statistical tools and emulator technology, we make quantitative predictions for the properties of 208Pb starting from nuclear forces that are consistent with symmetries of low-energy quantum chromodynamics. We explore 109 different nuclear force parameterizations via history matching, confront them with data in select light nuclei and arrive at an importance-weighted ensemble of interactions. We accurately reproduce bulk properties of 208Pb and determine the neutron skin thickness, which is smaller and more precise than a recent extraction from parity-violating electron scattering but in agreement with other experimental probes. This work demonstrates how realistic two- and three-nucleon forces act in a heavy nucleus and allows us to make quantitative predictions across the nuclear landscape.

17.
Proc Natl Acad Sci U S A ; 105(45): 17250-5, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18539773

RESUMEN

Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.


Asunto(s)
Iones/química , Nanotubos de Carbono/química , Canales Iónicos/química , Transporte Iónico , Porosidad , Electricidad Estática
18.
Phys Rev Lett ; 105(3): 032501, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20867759

RESUMEN

The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from (28)O to the experimentally observed (24)O. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

19.
Am J Forensic Med Pathol ; 31(2): 200-3, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20110802

RESUMEN

Kinesiology is the study of human movement, and comprises several disciplines, each devoted to a specific aspect of human activity, each with its own set of principles and methods to assess and analyze movement. Forensic kinesiology is the application of kinesiological techniques to accident/crime investigation; specialists in this field can use various tools and procedures to measure, analyze, model, and determine the movement sequences involved in events under investigation. This article will highlight major subdisciplines of kinesiology most relevant to forensics, present the key assessment and analytical tools used by kinesiologists, and demonstrate how both the principles and the practices of kinesiology can be applied to accident/crime investigation.


Asunto(s)
Ciencias Forenses , Cinesis , Fenómenos Biomecánicos , Ambiente , Arquitectura y Construcción de Instituciones de Salud , Humanos , Monitoreo Ambulatorio/instrumentación , Movimiento , Propiocepción , Desempeño Psicomotor , Reflejo , Grabación en Video
20.
Aging Cell ; 15(3): 582-4, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27139744

RESUMEN

Recent high-profile studies report GDF11 to be a key circulating 'anti-aging' factor. However, a screen of extracellular proteins attempting to identify factors with 'anti-aging' phenotypes in aged murine skeletal muscle satellite cells did not identify GDF11 activity. We have been unable to confirm the reported activity of GDF11, similar to other laboratories offering conflicting data and describe our attempts to do so in this short take.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Factores de Diferenciación de Crecimiento/farmacología , Células Satélite del Músculo Esquelético/citología , Animales , Recuento de Células , Células HEK293 , Humanos , Ratones , Proteínas Recombinantes/farmacología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA