Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19121, 2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926735

RESUMEN

Oxidized albumin (oxHSA) is elevated in several pathological conditions, such as decompensated cirrhosis, acute on chronic liver failure and liver mediated renal failure. Patient derived oxidized albumin was previously shown to be an inflammatory mediator, and in normal serum levels of oxHSA are low. The removal from circulation of oxidized albumins is therefore likely required for maintenance of homeostasis. Liver sinusoidal endothelial cells (LSEC) are prominent scavenger cells specialized in removal of macromolecular waste. Given that oxidized albumin is mainly cleared by the liver, we hypothesized the LSEC are the site of uptake in the liver. In vivo oxHSA was cleared rapidly by the liver and distributed to mainly the LSEC. In in vitro studies LSEC endocytosed oxHSA much more than other cell populations isolated from the liver. Furthermore, it was shown that the uptake was mediated by the stabilins, by affinity chromatography-mass spectrometry, inhibiting uptake in LSEC with other stabilin ligands and showing uptake in HEK cells overexpressing stabilin-1 or -2. oxHSA also inhibited the uptake of other stabilin ligands, and a 2-h challenge with 100 µg/mL oxHSA reduced LSEC endocytosis by 60% up to 12 h after. Thus the LSEC and their stabilins mediate clearance of highly oxidized albumin, and oxidized albumin can downregulate their endocytic capacity in turn.


Asunto(s)
Células Endoteliales , Hígado , Humanos , Albúminas , Células Endoteliales/fisiología , Endotelio , Hepatocitos , Ligandos
2.
Sci Rep ; 13(1): 13390, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591901

RESUMEN

Xanthines such as caffeine and theobromine are among the most consumed psychoactive stimulants in the world, either as natural components of coffee, tea and chocolate, or as added ingredients. The present study assessed if xanthines affect liver sinusoidal endothelial cells (LSEC). Cultured primary rat LSEC were challenged with xanthines at concentrations typically obtained from normal consumption of xanthine-containing beverages, food or medicines; and at higher concentrations below the in vitro toxic limit. The fenestrated morphology of LSEC were examined with scanning electron and structured illumination microscopy. All xanthine challenges had no toxic effects on LSEC ultrastructure as judged by LSEC fenestration morphology, or function as determined by endocytosis studies. All xanthines in high concentrations (150 µg/mL) increased fenestration frequency but at physiologically relevant concentrations, only theobromine (8 µg/mL) showed an effect. LSEC porosity was influenced only by high caffeine doses which also shifted the fenestration distribution towards smaller pores. Moreover, a dose-dependent increase in fenestration number was observed after caffeine treatment. If these compounds induce similar changes in vivo, age-related reduction of LSEC porosity can be reversed by oral treatment with theobromine or with other xanthines using targeted delivery.


Asunto(s)
Cafeína , Teobromina , Animales , Ratas , Cafeína/farmacología , Xantina , Teobromina/farmacología , Células Endoteliales , Hígado
3.
Front Physiol ; 12: 735573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588998

RESUMEN

The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.

4.
Mol Cancer Ther ; 18(11): 2171-2181, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31467182

RESUMEN

Patients with melanoma have a high risk of developing brain metastasis, which is associated with a dismal prognosis. During early stages of metastasis development, the blood-brain barrier (BBB) is likely intact, which inhibits sufficient drug delivery into the metastatic lesions. We investigated the ability of the peptide, K16ApoE, to permeabilize the BBB for improved treatment with targeted therapies preclinically. Dynamic contrast enhanced MRI (DCE-MRI) was carried out on NOD/SCID mice to study the therapeutic window of peptide-mediated BBB permeabilization. Further, both in vivo and in vitro assays were used to determine K16ApoE toxicity and to obtain mechanistic insight into its action on the BBB. The therapeutic impact of K16ApoE on metastases was evaluated combined with the mitogen-activated protein kinase pathway inhibitor dabrafenib, targeting BRAF mutated melanoma cells, which is otherwise known not to cross the intact BBB. Our results from the DCE-MRI experiments showed effective K16ApoE-mediated BBB permeabilization lasting for up to 1 hour. Mechanistic studies showed a dose-dependent effect of K16ApoE caused by induction of endocytosis. At concentrations above IC50, the peptide additionally showed nonspecific disturbances on plasma membranes. Combined treatment with K16ApoE and dabrafenib reduced the brain metastatic burden in mice and increased animal survival, and PET/CT showed that the peptide also facilitated the delivery of compounds with molecular weights as large as 150 kDa into the brain. To conclude, we demonstrate a transient permeabilization of the BBB, caused by K16ApoE, that facilitates enhanced drug delivery into the brain. This improves the efficacy of drugs that otherwise do not cross the intact BBB.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Imidazoles/administración & dosificación , Melanoma/tratamiento farmacológico , Oximas/administración & dosificación , Péptidos/administración & dosificación , Animales , Barrera Hematoencefálica/química , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Perros , Relación Dosis-Respuesta a Droga , Endocitosis , Humanos , Imidazoles/farmacocinética , Células de Riñón Canino Madin Darby , Melanoma/genética , Ratones , Mutación , Oximas/farmacocinética , Péptidos/farmacocinética , Proteínas Proto-Oncogénicas B-raf/genética , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA