Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2207329119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36252100

RESUMEN

Increased wildfire events constitute a significant threat to life and property in the United States. Wildfire impact on severe storms and weather hazards is another pathway that threatens society, and our understanding of which is very limited. Here, we use unique modeling developments to explore the effects of wildfires in the western US (mainly California and Oregon) on precipitation and hail in the central US. We find that the western US wildfires notably increase the occurrences of heavy precipitation rates by 38% and significant severe hail (≥2 in.) by 34% in the central United States. Both heat and aerosols from wildfires play an important role. By enhancing surface high pressure and increasing westerly and southwesterly winds, wildfires in the western United States produce (1) stronger moisture and aerosol transport to the central United States and (2) larger wind shear and storm-relative helicity in the central United States. Both the meteorological environment more conducive to severe convective storms and increased aerosols contribute to the enhancements of heavy precipitation rates and large hail. Moreover, the local wildfires in the central US also enhance the severity of storms, but their impact is notably smaller than the impact of remote wildfires in California and Oregon because of the lessened severity of the local wildfires. As wildfires are projected to be more frequent and severe in a warmer climate, the influence of wildfires on severe weather in downwind regions may become increasingly important.


Asunto(s)
Incendios Forestales , Aerosoles , Oregon , Estados Unidos , Tiempo (Meteorología) , Viento
2.
Proc Natl Acad Sci U S A ; 114(25): E4905-E4913, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584119

RESUMEN

We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4.

3.
J Geophys Res Atmos ; 126(13)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34322360

RESUMEN

Stratosphere-reaching moist convection can significantly alter the dynamics, chemistry, and climate of the Earth system. This study seeks to add to the emerging understanding of the frequency, depth, and stratospheric impact of such events using 22 years (1996-2017) of ground-based radar observations in the contiguous United States. While most prior studies identify such storms using the temperature lapse-rate tropopause (LRT) as a troposphere-stratosphere boundary, this study is the first to identify convection that reaches into stratospheric air below the LRT (tropopause depressions, excluding folds) as well. It is found that tropopause depression (TD) overshooting and LRT overshooting occur at similar frequency over the United States, with TD overshooting being more episodic in nature than LRT overshooting. TD overshooting is also found more often throughout the cooler months of the year, while LRT overshooting dominates all overshooting in the summer months. Stratospheric residence of overshoot material, as estimated using trajectory calculations driven by large-scale winds, suggests that the vast majority of TD overshoot material does not remain in the stratosphere within 5 days downstream and rarely impacts altitudes more than 1 km above the LRT. Conversely, the majority of LRT overshoot material remains in the stratosphere downstream and routinely impacts altitudes >1 and >2 km above the tropopause.

4.
J Geophys Res Atmos ; 126(3)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33868886

RESUMEN

Moist convection frequently reaches the tropopause and alters the distribution and concentration of radiatively important trace gases in the upper troposphere and lower stratosphere (UTLS), but the overall impact of convection on regional and global UTLS composition remains largely unknown. To improve understanding of convection-driven changes in water vapor (H2O), ozone (O3), and carbon monoxide (CO) in the UTLS, this study utilizes 13 years of observations of satellite-based trace gas profiles from the Microwave Limb Sounder (MLS) aboard the Aura satellite and convection from the operational network of ground-based weather radars in the United States. Locations with and without convection identified via radar are matched with downstream MLS observations through three-dimensional, kinematic forward trajectories, providing two populations of trace gas observations for analysis. These populations are further classified as belonging to extratropical or tropical environments based on the tropopause pressure at the MLS profile location. Extratropical regions are further separated by tropopause type (single or double), revealing differing impacts. Results show that convection typically moistens the UT by up to 300% and the LS by up to 100%, largely reduces O3 by up to 40%, and increases CO by up to 50%. Changes in H2O and O3 are robust, with LS O3 reduced more by convection within tropical environments, where the median concentration decrease is 34% at ~2 km above tropopause, compared to 24% in extratropical environments. Quantification of CO changes from convection is less reliable due to differences being near the MLS measurement precision and accuracy.

5.
Mon Weather Rev ; 149(4): 945-958, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33867583

RESUMEN

Assessments of spatiotemporal severe hailfall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter maximum expected size of hail (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hailfall characteristics during a 23-yr period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995-2017). Next, environmental constraints from the Modern-Era Retrospective Analysis for Research and Applications, version 2, are applied to the MESH distributions to produce a corrected hailfall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions: the Great Plains and the Gulf Coast. The environmentally filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods, and it reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.

6.
J Clim ; 33(10): 3947-3966, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33967388

RESUMEN

Hailstones are a natural hazard that pose a significant threat to property and are responsible for significant economic losses each year in the United States. Detailed understanding of their characteristics is essential to mitigate their impact. Identifying the dynamic and physical factors contributing to hail formation and hailstone sizes is of great importance to weather and climate prediction and policymakers. In this study, we have analyzed the temporal and spatial variabilities of severe hail occurrences over the U.S. southern Great Plains (SGP) states from 2004 to 2016 using two hail datasets: hail reports from the Storm Prediction Center and the newly developed radar-retrieved maximum expected size of hail (MESH). It is found that severe and significant severe hail occurrences have a considerable year-to-year temporal variability in the SGP region. The interannual variabilities have a strong correspondence with sea surface temperature anomalies over the northern Gulf of Mexico and there is no outlier. The year 2016 is identified as an outlier for the correlations with both El Niño-Southern Oscillation (ENSO) and aerosol loading. The correlations with ENSO and aerosol loading are not statistically robust to inclusion of the outlier 2016. Statistical analysis without the outlier 2016 shows that 1) aerosols that may be mainly from northern Mexico have the largest correlation with hail interannual variability among the three factors and 2) meteorological covariation does not significantly contribute to the high correlation. These analyses warrant further investigations of aerosol impacts on hail occurrence.

7.
J Appl Meteorol Climatol ; 58(5): 947-970, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-33867891

RESUMEN

Severe hail days account for the vast majority of severe weather-induced property losses in the United States each year. In the United States, real-time detection of severe storms is largely conducted using ground-based radar observations, mostly using the operational Next Generation Weather Radar network (NEXRAD), which provides three-dimensional information on the physics and dynamics of storms at ~5-min time intervals. Recent NEXRAD upgrades to higher resolution and to dual-polarization capabilities have provided improved hydrometeor discrimination in real time. New geostationary satellite platforms have also led to significant changes in observing capabilities over the United States beginning in 2016, with spatiotemporal resolution that is comparable to that of NEXRAD. Given these recent improvements, a thorough assessment of their ability to identify hailstorms and hail occurrence and to discriminate between hail sizes is needed. This study provides a comprehensive comparative analysis of existing observational radar and satellite products from more than 10 000 storms objectively identified via radar echo-top tracking and nearly 6000 hail reports during 30 recent severe weather days (2013-present). It is found that radar observations provide the most skillful discrimination between severe and nonsevere hailstorms and identification of individual hail occurrence. Single-polarization and dual-polarization radar observations perform similarly at these tasks, with the greatest skill found from combining both single- and dual-polarization metrics. In addition, revisions to the ''maximum expected size of hail'' (MESH) metric are proposed and are shown to improve spatiotemporal comparisons between reported hail sizes and radar-based estimates for the cases studied.

8.
J Appl Meteorol Climatol ; 58(12): 2569-2590, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33867890

RESUMEN

Remote sensing observations, especially those from ground-based radars, have been used extensively to discriminate between severe and nonsevere storms. Recent upgrades to operational remote sensing networks in the United States have provided unprecedented spatial and temporal sampling to study such storms. These networks help forecasters subjectively identify storms capable of producing severe weather at the ground; however, uncertainties remain in how to objectively identify severe thunderstorms using the same data. Here, three large-area datasets (geostationary satellite, ground-based radar, and ground-based lightning detection) are used over 28 recent events in an attempt to objectively discriminate between severe and nonsevere storms, with an additional focus on severe storms that produce tornadoes. Among these datasets, radar observations, specifically those at mid- and upper levels (altitudes at and above 4 km), are shown to provide the greatest objective discrimination. Physical and kinematic storm characteristics from all analyzed datasets imply that significantly severe [≥2-in. (5.08 cm) hail and/or ≥65-kt (33.4 ms-1) straight-line winds] and tornadic storms have stronger upward motion and rotation than nonsevere and less severe storms. In addition, these metrics are greatest in tornadic storms during the time in which tornadoes occur.

9.
J Geophys Res Atmos ; 123(14): 7594-7614, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32802698

RESUMEN

Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed-phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high-resolution (dx ≤ 3 km) WRF-Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF-Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low-background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF-Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.

10.
J Atmos Sci ; 74(5): 1617-1633, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-33958814

RESUMEN

Expansive cirrus clouds present above the anvils of extratropical convection have been observed in satellite and aircraft-based imagery for several decades. Despite knowledge of their occurrence, the precise mechanisms and atmospheric conditions leading to their formation and maintenance are not entirely known. Here, the formation of these cirrus "plumes" is examined using a combination of satellite imagery, four-dimensional ground-based radar observations, assimilated atmospheric states from a state-of-the-art reanalysis, and idealized numerical simulations with explicitly resolved convection. Using data from 20 recent events (2013-present), it is found that convective cores of storms with above-anvil cirrus plumes reach altitudes 1-6 km above the tropopause. Thus, it is likely that these clouds represent the injection of cloud material into the lower stratosphere. Comparison of storms with above-anvil cirrus plumes and observed tropopause-penetrating convection without plumes reveals an association with large vector differences between the motion of a storm and the environmental wind in the upper troposphere and lower stratosphere (UTLS), suggesting that gravity wave breaking and/or stretching of the tropopause-penetrating cloud are/is more prevalent in plume-producing storms. A weak relationship is found between plume occurrence and the stability of the lower stratosphere (or tropopause structure), and no relationship is found with the duration of stratospheric penetration or stratospheric humidity. Idealized model simulations of tropopause-penetrating convection with small and large magnitudes of storm-relative wind in the UTLS are found to reproduce the observationally established storm-relative wind relationship and show that frequent gravity wave breaking is the primary mechanism responsible for plume formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA