Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612808

RESUMEN

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Asunto(s)
Enfermedades del Colon , Células Intersticiales de Cajal , Animales , Ratones , Masculino , Serotonina/farmacología , Células Intersticiales del Testículo , Inhibidores de Adenilato Ciclasa , Bloqueadores de los Canales de Calcio , Inhibidores de Proteínas Quinasas
2.
Am J Physiol Cell Physiol ; 324(6): C1295-C1306, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154492

RESUMEN

Traditionally prescribed for mood disorders, tricyclic antidepressants (TCAs) have shown promising therapeutic effects on chronic neuralgia and irritable bowel syndrome. However, the mechanism by which these atypical effects manifest is unclear. Among the proposed mechanisms is the well-known pain-related inhibitory G-protein coupled receptor, namely the opioid receptor (OR). Here, we confirmed that TCA indeed stimulates OR and regulates the gating of TRPC4, a downstream signaling of the Gi-pathway. In an ELISA to quantify the amount of intracellular cAMP, a downstream product of OR/Gi-pathway, treatment with amitriptyline (AMI) showed a decrease in [cAMP]i similar to that of the µOR agonist. Next, we explored the binding site of TCA by modeling the previously revealed ligand-bound structure of µOR. A conserved aspartate residue of ORs was predicted to participate in salt bridge interaction with the amine group of TCAs, and in aspartate-to-arginine mutation, AMI did not decrease the FRET-based binding efficiency between the ORs and Gαi2. As an alternative way to monitor the downstream signaling of Gi-pathway, we evaluated the functional activity of TRPC4 channel, as it is well known to be activated by Gαi. TCAs increased the TRPC4 current through ORs, and TCA-evoked TRPC4 activation was abolished by an inhibitor of Gαi2 or its dominant-negative mutant. As expected, TCA-evoked activation of TRPC4 was not observed in the aspartate mutants of OR. Taken together, OR could be proclaimed as a promising target among numerous binding partners of TCA, and TCA-evoked TRPC4 activation may help to explain the nonopioid analgesic effect of TCA.NEW & NOTEWORTHY Endogenous opioid systems modulate pain perception, but concerns about opioid-related substance misuse limit their use. This study has raised TRPC4 channel as a candidate target for alternative analgesics, tricyclic antidepressants (TCAs). TCAs have been shown to bind to and activate opioid receptors (ORs), leading to downstream signaling pathways involving TRPC4. The functional selectivity and biased agonism of TCA towards TRPC4 in dependence on OR may provide a better understanding of its efficacy or side effects.


Asunto(s)
Analgésicos Opioides , Antidepresivos Tricíclicos , Antidepresivos Tricíclicos/farmacología , Antidepresivos Tricíclicos/uso terapéutico , Ácido Aspártico , Ligandos , Proteínas Portadoras , Amitriptilina/farmacología , Amitriptilina/uso terapéutico , Receptores Opioides
3.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 67-73, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37224044

RESUMEN

Adenosine plays an important role on gastrointestinal (GI) motility through adenosine receptors. Interstitial cells of Cajal (ICC) are pacemaker cells that regulate GI smooth muscle activity. The functional role and its signal mechanism of adenosine on the pacemaker activity were investigated using whole-cell patch clamp, RT-PCR, and intracellular Ca2+-imaging with ICC from mouse colon. Adenosine depolarized the membrane potentials and increased the pacemaker potential frequency, which was blocked by a selective A1-receptor antagonist, but not A2a-, A2b, or A3-receptor antagonist. A selective A1 receptor agonist represented similar effects as those of adenosine and mRNA transcript of A1-receptor was expressed in ICC. The adenosine-induced effects were blocked by phospholipase C (PLC) and a Ca2+-ATPase inhibitor. Adenosine increased spontaneous intracellular Ca2+ oscillations, as seen fluo4/AM. Both hyperpolarization-activated cyclic nucleotide (HCN) channel inhibitors and adenylate cyclase inhibitors blocked the adenosine-induced effects. And adenosine increased the basal cellular adenylate cyclase activity in colonic ICC. However, adenosine and adenylate cyclase inhibitors did not show any influence on pacemaker activity in small intestinal ICC for a comparison with that of the small intestine. These results suggest adenosine modulates the pacemaker potentials by acting HCN channels- and intracellular Ca2+- dependent mechanisms through A1-receptor. Therefore, adenosine may be a therapeutic target in colonic motility disorders.


Asunto(s)
Células Intersticiales de Cajal , Animales , Ratones , Inhibidores de Adenilato Ciclasa , Calcio , Adenosina/farmacología , Colon
4.
J Cell Mol Med ; 26(19): 4911-4923, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35560982

RESUMEN

Tricyclic antidepressants (TCAs) have been used to treat depression and were recently approved for treating irritable bowel syndrome (IBS) patients with severe or refractory IBS symptoms. However, the molecular mechanism of TCA action in the gastrointestinal (GI) tract remains poorly understood. Transient receptor potential channel canonical type 4 (TRPC4), which is a Ca2+ -permeable nonselective cation channel, is a critical regulator of GI excitability. Herein, we investigated whether TCA modulates TRPC4 channel activity and which mechanism in colonic myocytes consequently causes constipation. To prove the clinical benefit in patients with diarrhoea caused by TCA treatment, we performed mechanical tension recording of repetitive motor pattern (RMP) in segment, electric field stimulation (EFS)-induced and spontaneous contractions in isolated muscle strips. From these recordings, we observed that all TCA compounds significantly inhibited contractions of colonic motility in human. To determine the contribution of TRPC4 to colonic motility, we measured the electrical activity of heterologous or endogenous TRPC4 by TCAs using the patch clamp technique in HEK293 cells and murine colonic myocytes. In TRPC4-overexpressed HEK cells, we observed TCA-evoked direct inhibition of TRPC4. Compared with TRPC4-knockout mice, we identified that muscarinic cationic current (mIcat ) was suppressed through TRPC4 inhibition by TCA in isolated murine colonic myocytes. Collectively, we suggest that TCA action is responsible for the inhibition of TRPC4 channels in colonic myocytes, ultimately causing constipation. These findings provide clinical insights into abnormal intestinal motility and medical interventions aimed at IBS therapy.


Asunto(s)
Síndrome del Colon Irritable , Canales Catiónicos TRPC , Animales , Antidepresivos Tricíclicos/farmacología , Cationes/metabolismo , Colinérgicos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células Musculares/metabolismo , Receptores Muscarínicos/metabolismo , Canales Catiónicos TRPC/genética
5.
J Cell Mol Med ; 26(2): 364-374, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845842

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels function as pacemaker channels in spontaneously active cells. We studied the existence of HCN channels and their functional roles in the interstitial cells of Cajal (ICC) from the mouse colon using electrophysiological, immunohistochemical and molecular techniques. HCN1 and HCN3 channels were detected in anoctamin-1 (Ca2+ -activated Cl- channel; ANO1)-positive cells within the muscular and myenteric layers in colonic tissues. The mRNA transcripts of HCN1 and HCN3 channels were expressed in ANO1-positive ICC. In the deletion of HCN1 and HCN3 channels in colonic ICC, the pacemaking potential frequency was reduced. Basal cellular adenylate cyclase activity was decreased by adenylate cyclase inhibitor in colonic ICC, whereas cAMP-specific phosphodiesterase inhibitors increased it. 8-Bromo-cyclic AMP and rolipram increased spontaneous intracellular Ca2+ oscillations. In addition, Ca2+ -dependent adenylate cyclase 1 (AC1) mRNA was detected in colonic ICC. Sulprostone, a PGE2 -EP3 agonist, increased the pacemaking potential frequency, maximum rate of rise of resting membrane in pacemaker potentials and basal cellular adenylate cyclase activity in colonic ICC. These results indicate that HCN channels exist in colonic ICC and participate in generating pacemaking potentials. Thus, HCN channels may be therapeutic targets in disturbed colonic motility disorders.


Asunto(s)
Células Intersticiales de Cajal , Animales , Colon , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Células Intersticiales de Cajal/fisiología , Ratones
6.
Pflugers Arch ; 471(8): 1045-1053, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31222490

RESUMEN

Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.


Asunto(s)
Neuronas/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Humanos , Potenciales de la Membrana , Neuronas/fisiología , Multimerización de Proteína , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética
7.
Cell Physiol Biochem ; 51(6): 2887-2899, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30562749

RESUMEN

BACKGROUND/AIMS: Anoctamin1 (Ca2+-activated Cl- channel, ANO1) is a specific marker of the interstitial cells of Cajal (ICC) in the gastrointestinal tract, and are candidate proteins that can function as pacemaker channels. Recently, novel selective ANO1 inhibitors were discovered and used to study Ca2+-activated Cl- channels. Therefore, to investigate whether ANO1 channels function as pacemaker channels, selective ANO1 inhibitors were tested with respect to the pacemaker potentials in ICC. METHODS: Whole-cell patch-clamp recording, RT-PCR, and intracellular Ca2+ ([Ca2+]i) imaging were performed in cultured ICC obtained from mice. RESULTS: Though CaCCinh-A01 (5 µM), T16Ainh-A01 (5 µM), and MONNA (5 µM) (selective ANO1 inhibitors) blocked the generation of pacemaker potentials in colonic ICC, they did not do so in small intestinal ICC. Though nifulmic acid (10 µM) and DIDS (10 µM) (classical Ca2+-activated Cl- channel inhibitors) also had no effect in small intestinal ICC, they suppressed the generation of pacemaker potentials in colonic ICC. In addition, knockdown of ANO1 reduced the pacemaker potential frequency in colonic ICC alone. Though ANO1 inhibitors suppressed [Ca2+]i oscillations in colonic ICC, they did not do so in small intestinal ICC. T-type Ca2+ channels were expressed in the both the small intestinal and colonic ICC, but mibefradil (5 µM) and NiCl2 (30 µM) (T-type Ca2+ channel inhibitors) inhibited the generation of pacemaker potentials in colonic ICC alone. CONCLUSION: These results indicate that though ANO1 and T-type Ca2+ channels participate in generating pacemaker potentials in colonic ICC, they do not do so in small intestinal ICC. Therefore, the mechanisms underlying pacemaking in ICC might be different in the small intestine and the colon.


Asunto(s)
Anoctamina-1/antagonistas & inhibidores , Células Intersticiales de Cajal/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Pirimidinas/farmacología , Tiazoles/farmacología , Tiofenos/farmacología , ortoaminobenzoatos/farmacología , Animales , Anoctamina-1/metabolismo , Calcio/metabolismo , Células Cultivadas , Femenino , Células Intersticiales de Cajal/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Técnicas de Placa-Clamp
8.
Ann Neurol ; 82(3): 466-478, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28856709

RESUMEN

OBJECTIVE: Rett syndrome (RTT) and epileptic encephalopathy (EE) are devastating neurodevelopmental disorders with distinct diagnostic criteria. However, highly heterogeneous and overlapping clinical features often allocate patients into the boundary of the two conditions, complicating accurate diagnosis and appropriate medical interventions. Therefore, we investigated the specific molecular mechanism that allows an understanding of the pathogenesis and relationship of these two conditions. METHODS: We screened novel genetic factors from 34 RTT-like patients without MECP2 mutations, which account for ∼90% of RTT cases, by whole-exome sequencing. The biological function of the discovered variants was assessed in cell culture and Xenopus tropicalis models. RESULTS: We identified a recurring de novo variant in GABAB receptor R2 (GABBR2) that reduces the receptor function, whereas different GABBR2 variants in EE patients possess a more profound effect in reducing receptor activity and are more responsive to agonist rescue in an animal model. INTERPRETATION: GABBR2 is a genetic factor that determines RTT- or EE-like phenotype expression depending on the variant positions. GABBR2-mediated γ-aminobutyric acid signaling is a crucial factor in determining the severity and nature of neurodevelopmental phenotypes. Ann Neurol 2017;82:466-478.


Asunto(s)
Mutación , Receptores de GABA-B/genética , Síndrome de Rett/genética , Espasmos Infantiles/genética , Exoma , Genotipo , Células HEK293 , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Fenotipo , Transducción de Señal/genética
9.
Pflugers Arch ; 469(2): 183-193, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27921211

RESUMEN

The chloride channel (CLC) family of proteins consists of channels and transporters that share similarities in architecture and play essential roles in physiological functions. Among the CLC family, CLC-1 channels have the representative homodimeric double-barreled structure carrying two gating processes. One is protopore gating that acts on each pore independently by glutamate residue (Eext). The other is common gating that closes both pores simultaneously in association with large conformational changes across each subunit. In skeletal muscle, CLC-1 is associated with maintaining normal sarcolemmal excitability, and a number of myotonic mutants were reported to modify the channel gating of CLC-1. In this study, we characterized highly conserved helix O as a key determinant of structural stability in CLC-1. Supporting this hypothesis, myotonic mutant (G523D) at N-terminal of helix O showed the activation at hyperpolarizing membrane potentials with a reversed voltage dependency. However, introducing glutamate at serine residue (S537) at the C-terminal of the helix O on G523D restored WT-like voltage dependency of the common gate and showed proton insensitive voltage dependency. To further validate this significant site, site-specific mutagenesis experiments was performed on V292 that is highly conserved as glutamate in antiporter and closely located to S537 and showed that this area is essential for channel function. Taken together, the results of our study suggest the importance of helix O as the main contributor for stable structure of evolutionary conserved CLC proteins and its key role in voltage dependency of the CLC-1. Furthermore, the C-terminal of the helix O can offer a clue for possible proton involvement in CLC-1 channel.


Asunto(s)
Canales de Cloruro/metabolismo , Línea Celular , Canales de Cloruro/genética , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Músculo Esquelético/metabolismo , Mutación/genética , Estructura Secundaria de Proteína
10.
Biochem Biophys Res Commun ; 474(3): 476-481, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27131740

RESUMEN

Transient receptor potential canonical (TRPC) family contains a non-selective cation channel, and four TRPC subunits form a functional tetrameric channel. TRPC4/5 channels form not only the homotetrameric channel but also a heterotetrameric channel with TRPC1. We investigated the interaction domain required for TRPC1/4 or TRPC1/5 heteromultimeric channels using FRET and the patch-clamp technique. TRPC1 only localized at the plasma membrane (PM) when it was coexpressed with TRPC4 or TRPC5. The TRPC1/4 or TRPC1/5 heteromultimeric showed the typical outward rectifying I/V curve. When TRPC1 and TRPC4 form a heteromeric channel, the N-terminal coiled-coil domain (CCD) and C-terminal 725-745 region of TRPC1 interact with the N-terminal CCD and C-terminal 700-728 region of TRPC4. However, when TRPC1 and TRPC5 form a heteromeric channel, the N-terminal CCD and C-terminal 673-725 region of TRPC1 interact with the N-terminal CCD and C-terminal 707-735 region of TRPC5. In conclusion, the N-terminal CCD of TRPC channels is essential for the heteromultimeric structure of TRPC channels, whereas specific C-terminal regions are required for unique heteromerization between subgroups of TRPC channels.


Asunto(s)
Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/metabolismo , Sitios de Unión , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína/fisiología
11.
Brain ; 138(Pt 10): 3030-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26133660

RESUMEN

Aberrant glutathione or Ca(2+) homeostasis due to oxidative stress is associated with the pathogenesis of neurodegenerative disorders. The Ca(2+)-permeable transient receptor potential cation (TRPC) channel is predominantly expressed in the brain, which is sensitive to oxidative stress. However, the role of the TRPC channel in neurodegeneration is not known. Here, we report a mechanism of TRPC5 activation by oxidants and the effect of glutathionylated TRPC5 on striatal neurons in Huntington's disease. Intracellular oxidized glutathione leads to TRPC5 activation via TRPC5 S-glutathionylation at Cys176/Cys178 residues. The oxidized glutathione-activated TRPC5-like current results in a sustained increase in cytosolic Ca(2+), activated calmodulin-dependent protein kinase and the calpain-caspase pathway, ultimately inducing striatal neuronal cell death. We observed an abnormal glutathione pool indicative of an oxidized state in the striatum of Huntington's disease transgenic (YAC128) mice. Increased levels of endogenous TRPC5 S-glutathionylation were observed in the striatum in both transgenic mice and patients with Huntington's disease. Both knockdown and inhibition of TRPC5 significantly attenuated oxidation-induced striatal neuronal cell death. Moreover, a TRPC5 blocker improved rearing behaviour in Huntington's disease transgenic mice and motor behavioural symptoms in littermate control mice by increasing striatal neuron survival. Notably, low levels of TRPC1 increased the formation of TRPC5 homotetramer, a highly Ca(2+)-permeable channel, and stimulated Ca(2+)-dependent apoptosis in Huntington's disease cells (STHdh(Q111/111)). Taken together, these novel findings indicate that increased TRPC5 S-glutathionylation by oxidative stress and decreased TRPC1 expression contribute to neuronal damage in the striatum and may underlie neurodegeneration in Huntington's disease.


Asunto(s)
Cuerpo Estriado/patología , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Enfermedad de Huntington/patología , Neuronas/metabolismo , Canales Catiónicos TRPC/metabolismo , Análisis de Varianza , Animales , Calcio/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Proteína Huntingtina , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPC/genética , Transfección
12.
Am J Physiol Cell Physiol ; 308(11): C879-89, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25788576

RESUMEN

TPRC channels are Ca(2+)-permeable, nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). TRPC4 is commonly assumed to be activated by Gq/phospholipase C-coupled receptors. However, the other molecular mechanisms by which Gα proteins regulate TRPC4 remain unclear. Here, we found that Gαi2 regulates TRPC4 activation by direct binding. To investigate this mechanism, we used whole patch clamp and fluorescence resonance energy transfer (FRET). We tagged an isoform of mTRPC4 and G protein with CFP and YFP, respectively, and transiently transfected cells with the FRET pair. The FRET efficiency between TRPC4ß-CFP and the constitutively active mutant form of Gαi2 was nearly 15% and was greater than that observed with wild-type Gαi2 (nearly 5%). Gßγ and the TRPC4 channel showed a FRET efficiency lower than 6%. In HEK293 cells transfected with the M2 muscarinic receptor, the application of carbachol increased the FRET efficiency between TRPC4ß-CFP and Gαi2(WT)-YFP from 4.7 ± 0.4% (n = 7) to 12.6 ± 1.4% (n = 7). We also found that the TRPC4 channel directly interacts with Gαi2, but not with Gαq, when the channel is open. We analyzed the calcium levels in HEK293 cells expressing the channels and Gαi2 or Gαq using the calcium indicator YC6.1 (Yellow Cameleon 6.1). In response to the muscarinic agonist carbachol, M2-, Gαi2-, and TRPC4-expressing cells showed a prolonged Ca(2+) influx compared with cells expressing only M2. Together, these data suggest that Gαi2 activates the TRPC4 channel by direct binding, which then induces Ca(2+) entry.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Canales Catiónicos TRPC/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/química , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Transferencia Resonante de Energía de Fluorescencia , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPC/metabolismo
13.
J Biol Chem ; 289(50): 34990-5002, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25349210

RESUMEN

Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). The TRPC4 channel is expressed in a punctate distribution in the membrane. To identify the regulating region of the channel trafficking to the membrane, we generated deletion mutants of the TRPC4 channel. We determined that when either region that was downstream of the 20 amino acids of the N terminus or the 700-730 amino acids was deleted, the mutants were retained in the endoplasmic reticulum. By coexpression of the wild-type TRPC4 with deletion mutants, we found that the 23-29 amino acids of the N terminus regulate a membrane trafficking. Additionally, by the fluorescence resonance energy transfer (FRET) method, we found that the regions downstream of the 99 amino acid region of the N terminus and upstream of the 730 amino acid region in the C terminus produce assembly of the TRPC4 tetramers. We inferred the candidate proteins that regulate or interact with the 23-29 domain of TRPC4.


Asunto(s)
Membrana Celular/metabolismo , Multimerización de Proteína , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/metabolismo , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Eliminación de Secuencia , Canales Catiónicos TRPC/genética
14.
Pflugers Arch ; 467(4): 703-12, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24859801

RESUMEN

Crucial cysteine residues can be involved in the modulation of protein activity via the modification of thiol (-SH) groups. Among these reactions, disulfide bonds (S-S) play a key role in the folding, stability, and activity of membrane proteins. However, the regulation of extracellular cysteines in classical transient receptor potential (TRPC) channels remains controversial. Here, we examine the functional importance of the extracellular disulfide bond in TRPC5 in modulating channel gating and trafficking. Specifically, we investigated TRPC5 activity in transiently transfected HEK293 cells with wild-type (WT) or cysteine (C553 and C558) mutants in the pore loop. Using reducing agents, we determined that a disulfide linkage mediates the tetrameric formation of the TRPC5 channel. By measuring the TRPC5 current, we observed that C553S or C558S mutants completely lose channel activity induced by lanthanides or receptor stimulation. Co-expression of TRPC5 (WT) with mutants demonstrated a dominant-negative function in mutants, which inhibited the activity of TRPC5 (WT). We generated TRPC5-TRPC5 dimers and observed reduced activity of WT-mutant (C553S or C558S) dimers compared to WT-WT dimers. When pretreated with reducing agents for 12 h, the TRPC5 current decreased due to a reduction in membrane TRPC5 distribution. In addition, we identified a reduced expression of C553S mutant in plasma membrane. We analyzed a dimeric interaction of wild-type and mutant TRPC5 using co-immunoprecipitation and FRET method, indicating a weak interaction between dimeric partners. These results indicated that the disulfide bond between conserved extracellular cysteines, especially C553, is essential for functional TRPC5 activity by channel multimerization and trafficking.


Asunto(s)
Cistina/química , Multimerización de Proteína , Canales Catiónicos TRPC/química , Animales , Células HEK293 , Humanos , Ratones , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales Catiónicos TRPC/metabolismo
15.
Pflugers Arch ; 466(3): 491-504, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23948741

RESUMEN

Transient receptor potential canonical (TRPC) 1, the first mammalian homologue of Drosophila trp gene, is distributed widely in mammalian cells and is involved in many physiological functions. TRPC1 is reported to be functional following heteromeric formation with other TRPC channels such as TRPC4 or TRPC5. It is known that the composition of this widely distributed TRPC1 is far from simple; functionality of such channels has been highly controversial. Furthermore, TRPC1 gene is known to have two splicing variants; one encodes long (TRPC1α) and the other encodes short (TRPC1ß) TRPC1 isoforms, respectively. In this study, we examined the functionality of TRPC1/4 channels using various activation systems. Gq/11-coupled receptor (e.g., M1 or M3 receptors) stimulation significantly increased TRPC1α/4 currents but induced mild activation of TRPC1ß/4. In addition, when expressed with TRPC4, TRPC1α acted as a pore-constituting subunit and not a ß ancillary subunit. Multimerized with TRPC4, TRPC1α also generated strong pore field strength. We also found that Gi/o-coupled receptor (e.g., M2 receptor) stimulation was insufficient to activate TRPC1α/4 and TRPC1ß/4 channels but selectively activated TRPC4 homomeric channels. These findings demonstrate that TRPC1/4 channel shows dynamic gating property depending on TRPC1 isoform subtypes and receptor stimulation system. Therefore, careful discrimination of the specificity of TRPC1 isoforms and upstream activation system is important in thorough understanding of TRPC1 and TRPC1/4 channels.


Asunto(s)
Multimerización de Proteína , Canales Catiónicos TRPC/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Receptor Muscarínico M2/metabolismo , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética
16.
Biochem Biophys Res Commun ; 447(1): 192-6, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24704446

RESUMEN

Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB-TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6-NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB-TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Próstata/fisiopatología , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Fosfohidrolasa PTEN/fisiología , Neoplasias de la Próstata/metabolismo , Transducción de Señal
17.
Korean J Physiol Pharmacol ; 18(1): 15-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24634592

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) is a member of the melastatin-related subfamily and contains a channel and a kinase domain. TRPM7 is known to be associated with cell proliferation, survival, and development. It is ubiquitously expressed, highly permeable to Mg(2+) and Ca(2+), and its channel activity is negatively regulated by free Mg(2+) and Mg-complexed nucleotides. Recent studies have investigated the relationships between TRPM7 and a number of diseases. TRPM7 regulates cell proliferation in several cancers, and is associated with ischemic cell death and vascular smooth muscle cell (VSMC) function. This review discusses the physiologic and pathophysiologic functions and significance of TRPM7 in several diseases.

18.
J Biol Chem ; 287(21): 17029-17039, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22457348

RESUMEN

The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca(2+)-permeable channels and mediate numerous cellular functions. It is commonly assumed that TRPC channels are activated by stimulation of Gα(q)-PLC-coupled receptors. However, whether the Gα(q)-PLC pathway is the main regulator of TRPC4/5 channels and how other Gα proteins may regulate these channels are poorly understood. We previously reported that TRPC4/TRPC5 can be activated by Gα(i). In the current work, we found that Gα(i) subunits, rather than Gα(q), are the primary and direct activators of TRPC4 and TRPC5. We report a novel molecular mechanism in which TRPC4 is activated by several Gα(i) subunits, most prominently by Gα(i2), and TRPC5 is activated primarily by Gα(i3). Activation of Gα(i) by the muscarinic M2 receptors or expression of the constitutively active Gα(i) mutants equally and fully activates the channels. Moreover, both TRPC4 and TRPC5 are activated by direct interaction of their conserved C-terminal SESTD (SEC14-like and spectrin-type domains) with the Gα(i) subunits. Two amino acids (lysine 715 and arginine 716) of the TRPC4 C terminus were identified by structural modeling as mediating the interaction with Gα(i2). These findings indicate an essential role of Gα(i) proteins as novel activators for TRPC4/5 and reveal the molecular mechanism by which G-proteins activate the channels.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Canales Catiónicos TRPC/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Mutación , Estructura Terciaria de Proteína , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Canales Catiónicos TRPC/genética
19.
Pflugers Arch ; 465(7): 1011-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23417604

RESUMEN

The transient receptor potential canonical 4 (TRPC4) channel is a Ca(2+)-permeable nonselective cation channel in mammalian cells and mediates a number of cellular functions. Many studies show that TRPC channels are activated by stimulation of Gαq-phospholipase C (PLC)-coupled receptors. However, our previous study showed that the TRPC4 current was inhibited by co-expression of a constitutively active form of Gαq (Gαq (Q209L)). A shortage of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in Gαq (Q209L) may be responsible for reduced TRPC4 activity. Here, we tested this hypothesis by using a rapamycin-inducible system that regulates PI(4,5)P2 acutely and specifically. Our results showed that the TRPC4ß current was reduced by inducible Gαq (Q209L), but not by the mutants with impaired binding ability to PLCß. Depletion of PI(4,5)P2 by inducing the inositol polyphosphate 5-phosphatase to HEK293 cells that express TRPC4ß led to an irreversible inhibition of TRPC4ß currents. In contrast, inducing phosphatidylinositol 4-phosphate 5-kinase or intracellular PI(4,5)P2 application did not activate the TRPC4ß current. Finally, we revealed that PI(4,5)P2 is important in delaying the desensitization of TRPC4ß. Taken together, we suggest that PI(4,5)P2 is not the activator of TRPC4ß activation, but it is still necessary for regulating TRPC4ß activation.


Asunto(s)
Potenciales de Acción , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Ratones , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
20.
J Proteome Res ; 11(2): 1018-26, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22106938

RESUMEN

The voltage-gated K(+) channel Kv2.1 is expressed as a highly phosphorylated protein in most central neurons, where it plays a key role in regulating neuronal membrane excitability. Previous studies have shown that Kv2.1 channel activity is upregulated by Src-mediated phosphorylation through an unknown mechanism. However, a systematic analysis of the molecular mechanism of Kv2.1 channel phosphorylation by Src is lacking. Here, we show that tyrosine phosphorylation by Src plays a fundamental role in regulating Kv2.1-mediated K(+) current enhancement. We found that the level of expression of the Kv2.1 protein is increased by Src kinase. Using mass spectrometric proteomic techniques, we identified two novel phosphotyrosine sites, Y686 and Y810, in the cytoplasmic domains of Kv2.1. We found that Src-dependent phosphorylation at these sites affects Kv2.1 through distinct regulatory mechanisms. Whereas phosphorylation at Y686 regulates Kv2.1 activity similarly to the known site Y124, phosphorylation at Y810 plays a significant role in regulating the intracellular trafficking of Kv2.1 channels. Our results show that these two novel tyrosine phosphorylation sites of Kv2.1 are crucial to regulating diverse aspects of Kv2.1 channel function and provide novel insights into molecular mechanisms for the regulation of Src-dependent modulation of Kv2.1 channels.


Asunto(s)
Canales de Potasio Shab/metabolismo , Familia-src Quinasas/metabolismo , Dominio Catalítico , Células HEK293 , Humanos , Transporte Iónico , Espectrometría de Masas , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio Shab/química , Familia-src Quinasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA