Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Res Notes ; 16(1): 138, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415236

RESUMEN

OBJECTIVES: The rapid growth of machine learning methods has led to an increase in the demand for data. For bearing fault diagnosis, the data acquisition is time-consuming with complicated processes. Existing datasets are only focused on only one type of bearing, which limits real-world applications. Therefore, the objective of this work is to propose a diverse dataset for ball bearing fault diagnosis based on vibration. DATA DESCRIPTION: In this work, we introduce a practical dataset named HUST bearing, which provides a large set of vibration data on different ball bearings. This dataset contains 99 raw vibration signals of 6 types of defects (inner crack, outer crack, ball crack, and their 2-combinations) on 5 types of bearing (6204, 6205, 6206, 6207, and 6208) at 3 working conditions (0 W, 200 W, and 400 W). Each vibration signal is sampled at a rate of 51,200 samples per second for 10 s. The data acquisition system is elaborately designed with high reliability.


Asunto(s)
Aprendizaje Automático , Condiciones de Trabajo , Reproducibilidad de los Resultados
2.
RSC Adv ; 12(51): 33403-33408, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425159

RESUMEN

In this work, a method of fabricating a NO2 nano-sensor working at room temperature with a low detectable concentration limit is proposed. A 2D-MoS2 flake is isolated by transferring a single MoS2 flake to SiO2/Si substrate, followed by applying an advanced e-beam lithography (EBL) to form a metal contact with Au/Cr electrodes. The resulting chemoresistive nano-sensor using a single MoS2 flake was applied to detect a very low concentration of NO2 at the part-per-billion (ppb) level. This result is obtained due to the ability to create microscopic nano-sized MoS2 gaps using e-beam lithography (300 nm-400 nm). Experimental results also show that the sensor can capture changes in concentration and send the information out extremely quickly. The response and recovery time of the sensor also reached the lowest point of 50 and 75 ms, outperforming other sensors with a similar concentration working range.

3.
J Nanosci Nanotechnol ; 21(4): 2495-2499, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33500067

RESUMEN

We developed a novel sensor structure by synthesizing Pd nanocubes (NCs) decorated on ZnO nanostructures (NSs) applied to resistive-type H2 gas sensor with micro-length in sensing channel. The ZnO NSs were selectively grown between micro-size finger-like interdigital electrodes through microelectromechanical technology. The novel H2 sensor structure with the sensing channel was reduced to micro-size by this proposed method to obtain a sensor with fast response/recovery time. The as-prepared structure exhibited robust sensing performance with a response of 11% at optimal temperature of 150 °C, good linearity, and fast response/recovery time within 10 s. The speed of chemisorption through the diffusion pathway in Pd NCs combined with micro-length in sensing channel in sensor showed fast response and recovery times of 9 and 15 s, respectively, toward 10,000 ppm (1%) H2 at 150 °C. The result showed approximate linearity response in H2 concentration range of 5÷10,000 ppm and a large operating temperature range from room temperature to 200 °C.

4.
Talanta ; 88: 152-9, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22265481

RESUMEN

In spite of the technical important of monitoring CO(2) gas by using a semiconductor-type gas sensor, a good sensitive and selective semiconductor CO(2) sensor has been not realized due to the rather unreactive toward CO(2) of conventional semiconductor metal oxides. In this work, a novel semiconductor CO(2) sensor was developed by functionalizing SnO(2) nanowires (NWs) with LaOCl, which was obtained by heat-treating the SnO(2) NWs coating with LaCl(3) aqueous solution at a temperature range of 500-700°C. The bare SnO(2) NWs and LaOCl-SnO(2) NWs sensors were characterized with CO(2) (250-4,000 ppm) and interference gases (100 ppm CO, 100 ppm H(2), 250 ppm LPG, 10 ppm NO(2) and 20 ppm NH(3)) at different operating temperatures for comparison. The SnO(2) NWs sensors functionalized with different concentrations of LaCl(3) solution were also examined to find optimized values. Comparative gas sensing results reveal that LaOCl-SnO(2) NWs sensors exhibit much higher response, shorter response-recovery and better selectivity in detecting CO(2) gas at 400°C operating temperature than the bare SnO(2) NWs sensors. This finding indicates that the functionalizing with LaOCl greatly improves the CO(2) response of SnO(2) NWs-based sensor, which is attributed to (i) p-n junction formation of LaOCl (p-type) and SnO(2) nanowires (n-type) that led to the extension of electron depletion and (ii) the favorable catalytic effect of LaOCl to CO(2) gas.


Asunto(s)
Aire/análisis , Dióxido de Carbono/análisis , Ácido Hipocloroso/química , Lantano/química , Nanocables/química , Compuestos de Estaño/química , Catálisis , Gases , Calor , Semiconductores , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA