Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 170(1): 102-113.e14, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648662

RESUMEN

Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/citología , Células Madre/citología , División Celular , Frío , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Nicho de Células Madre , Estrés Fisiológico
2.
Gastroenterology ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147169

RESUMEN

BACKGROUND & AIMS: Peritoneal metastasis (PM) in gastric cancer (GC) is associated with poor prognosis and significant morbidity. We sought to understand the genomic, transcriptomic, and tumor microenvironment (TME) features that contribute to peritoneal organotropism in GC. METHODS: We conducted a comprehensive multi-omic analysis of 548 samples from 326 patients, including primary tumors, matched normal tissues; peritoneal metastases, and adjacent-normal peritoneal tissues. We used whole exome sequencing, whole transcriptome sequencing, and digital spatial profiling to investigate molecular alterations, gene expression patterns, and TME characteristics associated with PM. RESULTS: Our analysis identified specific genomic alterations in primary tumors, including mutations in ELF3, CDH1, and PIGR, and TME signatures, such as stromal infiltration and M2 macrophage enrichment, associated with increased risk of PM. We observed distinct transcriptional programs and immune compositions in GCPM compared with liver metastases, highlighting the importance of the TME in transcoelomic metastasis. We found differential expression of therapeutic targets between primary tumors and PM, with lower CLDN18.2 and FGFR2b expression in PM. We unravel the roles of the TME in niche reprogramming within the peritoneum, and provide evidence of pre-metastatic niche conditioning even in early GC without clinical PM. These findings were further validated using a humanized mouse model, which demonstrated niche remodeling in the peritoneum during transcoelomic metastasis. CONCLUSION: Our study provides a comprehensive molecular characterization of GCPM and unveils key biological principles underlying transcoelomic metastasis. The identified predictive markers, therapeutic targets, and TME alterations offer potential avenues for targeted interventions and improved patient outcomes.

3.
J Pathol ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360336

RESUMEN

Immune checkpoint blockade (ICB) is currently the standard of care for metastatic renal cell carcinoma (RCC), but treatment responses remain unpredictable. Aristolochic acid (AA), a prevalent supplement additive in Taiwan, has been associated with RCC and induces signature mutations, although its effect on the tumor-immune microenvironment (TIME) is unclear. We aimed to investigate the immune profile of AA-positive RCCs and explore its potential role as a susceptible candidate for ICB. Tissue samples from 22 patients with clear cell RCC (ccRCC) were collected for whole-exome sequencing to determine the genetic features and AA mutational signature (the discovery cohort). The corresponding RNA was sent for NanoString PanCancer IO 360 gene expression analysis to explore the immunological features. The formalin-fixed, parafilm-embedded slides of ccRCCs were sent for multiplex immunohistochemistry/immunofluorescence stain using Vectra system to evaluate the TIME. Tissues from two patients with metastatic RCC demonstrating complete response to ICB were sent for studies to validate the findings (the index patients). The results showed that AA mutational signatures with high tumor mutational burden (TMB) were present in 31.81% of the tumors in the discovery cohort. Three distinct clusters were observed through NanoString analysis. Clusters 1 and 3 were composed mainly of AA-positive RCCs. Cluster 3 RCCs exhibited higher tumor inflammation signature scores and higher immune cell type scores. Vectra analysis revealed a higher percentage of CD15+ and BATF3+ cells in cluster 1, whereas the percentage of CD8+ cells was potentially higher in cluster 3. Strong AA mutational signatures were found in the tumors of two index patients, and both were grouped to cluster 3. In conclusion, AA may induce higher TMB and alter the immune microenvironment in RCCs, which makes the tumors more susceptible to ICB. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

4.
Gut ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050079

RESUMEN

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

5.
Mol Cancer ; 22(1): 85, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210576

RESUMEN

BACKGROUND: Enhancer of zeste homolog 2 (EZH2), the key catalytic subunit of polycomb repressive complex 2 (PRC2), is overexpressed and plays an oncogenic role in various cancers through catalysis-dependent or catalysis-independent pathways. However, the related mechanisms contributing to ovarian cancer (OC) are not well understood. METHODS: The levels of EZH2 and H3K27me3 were evaluated in 105 OC patients by immunohistochemistry (IHC) staining, and these patients were stratified based on these levels. Canonical and noncanonical binding sites of EZH2 were defined by chromatin immunoprecipitation sequencing (ChIP-Seq). The EZH2 solo targets were obtained by integrative analysis of ChIP-Seq and RNA sequencing data. In vitro and in vivo experiments were performed to determine the role of EZH2 in OC growth. RESULTS: We showed that a subgroup of OC patients with high EZH2 expression but low H3K27me3 exhibited the worst prognosis, with limited therapeutic options. We demonstrated that induction of EZH2 degradation but not catalytic inhibition profoundly blocked OC cell proliferation and tumorigenicity in vitro and in vivo. Integrative analysis of genome-wide chromatin and transcriptome profiles revealed extensive EZH2 occupancy not only at genomic loci marked by H3K27me3 but also at promoters independent of PRC2, indicating a noncanonical role of EZH2 in OC. Mechanistically, EZH2 transcriptionally upregulated IDH2 to potentiate metabolic rewiring by enhancing tricarboxylic acid cycle (TCA cycle) activity, which contributed to the growth of OC. CONCLUSIONS: These data reveal a novel oncogenic role of EZH2 in OC and identify potential therapeutic strategies for OC by targeting the noncatalytic activity of EZH2.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Ováricas , Humanos , Femenino , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Neoplasias Ováricas/patología , Metilación , Línea Celular Tumoral
6.
Plant Cell Environ ; 45(2): 542-555, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34866195

RESUMEN

Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown. SCY1-LIKE2 (SCYL2) is evolutionally conserved among the eukaryote species. Loss-of-function of SCYL2 in Arabidopsis led to severe growth defects. Here, we show that mutation of OsSCYL2 in rice gave rise to a novel phenotype-hypersensitive response-like (HR) cell death in a light-dependent manner. Although mutants of OsSCYL2 showed additional defects in the photosynthetic system, they exhibited enhanced resistance to bacterial pathogens. Subcellular localisation showed that OsSCYL2 localized at Golgi, trans-Golgi network and prevacuolar compartment. OsSCYL2 interacted with OsSPL28, subunit of a clathrin-associated adaptor protein that is known to regulate HR-like cell death in rice. We further showed that OsSCYL2-OsSPL28 interaction is mediated by OsCHC1. Collectively, we characterized a novel component of the CMVT pathway in the regulation of plant immunity. Our work also revealed unidentified new functions of the very conserved SCYL2. It thus may provide new breeding targets to achieve both high yield and enhanced resistance in crops.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Oryza/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo
7.
Plant Physiol ; 171(1): 483-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26969721

RESUMEN

TOPOISOMERASE1 (TOP1), which releases DNA torsional stress generated during replication through its DNA relaxation activity, plays vital roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), TOP1 is encoded by two paralogous genes (TOP1α and TOP1ß), of which TOP1α displays specific developmental functions that are critical for the maintenance of shoot and floral stem cells. Here, we show that maintenance of two different populations of root stem cells is also dependent on TOP1α-specific developmental functions, which are exerted through two distinct novel mechanisms. In the proximal root meristem, the DNA relaxation activity of TOP1α is critical to ensure genome integrity and survival of stele stem cells (SSCs). Loss of TOP1α function triggers DNA double-strand breaks in S-phase SSCs and results in their death, which can be partially reversed by the replenishment of SSCs mediated by ETHYLENE RESPONSE FACTOR115 In the quiescent center and root cap meristem, TOP1α is epistatic to RETINOBLASTOMA-RELATED (RBR) in the maintenance of undifferentiated state and the number of columella stem cells (CSCs). Loss of TOP1α function in either wild-type or RBR RNAi plants leads to differentiation of CSCs, whereas overexpression of TOP1α mimics and further enhances the effect of RBR reduction that increases the number of CSCs Taken together, these findings provide important mechanistic insights into understanding stem cell maintenance in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , ADN-Topoisomerasas de Tipo I/metabolismo , Células Vegetales/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciación Celular , Supervivencia Celular/genética , ADN-Topoisomerasas de Tipo I/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Meristema/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Physiol ; 170(3): 1675-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26818732

RESUMEN

A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Co-Represoras/metabolismo , Giberelinas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Microscopía Confocal , Modelos Genéticos , Mutación , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
9.
Cancer Discov ; 14(3): 392-395, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426557

RESUMEN

SUMMARY: Accessibility to standard of care remains a challenge to patients in low- and middle-income countries (LMIC), hampering efforts to alleviate the burden of cancer and to improve overall health outcomes. In response to this pressing global health care issue, we propose here a new strategy to create affordable, easily accessible, and effective therapeutic solutions to address this inequity in cancer treatment: the use of science-based biodiversity medicine as an alternative to modern drug therapy, in which we will leverage and combine high-throughput omics technologies with artificial intelligence, to study local biodiversity, their potential anticancer properties, and short- and long-term clinical response and outcomes.


Asunto(s)
Países en Desarrollo , Neoplasias , Humanos , Inteligencia Artificial , Salud Global , Neoplasias/tratamiento farmacológico , Neoplasias/genética
10.
JCI Insight ; 9(14)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842940

RESUMEN

Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here, we show that ferroptosis negative regulation signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High-throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor-resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/eIF4E binding protein 1 (4EBP1) signaling promoted solute carrier family 7 member 11 (SLC7A11) protein synthesis, leading to ferroptosis inhibition in MEK inhibitor-resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR/4EBP1 axis to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Neoplasias Ováricas , Inhibidores de Proteínas Quinasas , Serina-Treonina Quinasas TOR , Ferroptosis/efectos de los fármacos , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transducción de Señal/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico
11.
Oncogene ; 43(28): 2172-2183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783101

RESUMEN

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.


Asunto(s)
Aurora Quinasa A , Proteína de Unión a CREB , Proteínas Proto-Oncogénicas c-myc , Mutaciones Letales Sintéticas , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Adv Sci (Weinh) ; : e2403782, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412086

RESUMEN

Poly (ADP-ribose) Polymerase inhibitors (PARPi) have demonstrated remarkable clinical efficacy in treating ovarian cancer (OV) with BRCA1/2 mutations. However, drug resistance inevitably limits their clinical applications and there is an urgent need for improved therapeutic strategies to enhance the clinical utility of PARPi, such as Olaparib. Here, compelling evidence indicates that sensitivity of PARPi is associated with cell cycle dysfunction. Through high-throughput drug screening with a cell cycle kinase inhibitor library, XL413, a potent cell division cycle 7 (CDC7) inhibitor, is identified which can synergistically enhance the anti-tumor efficacy of Olaparib. Mechanistically, the combined administration of XL413 and Olaparib demonstrates considerable DNA damage and DNA replication stress, leading to increased sensitivity to Olaparib. Additionally, a robust type-I interferon response is triggered through the induction of the cGAS/STING signaling pathway. Using murine syngeneic tumor models, the combination treatment further demonstrates enhanced antitumor immunity, resulting in tumor regression. Collectively, this study presents an effective treatment strategy for patients with advanced OV by combining CDC7 inhibitors (CDC7i) and PARPi, offering a promising therapeutic approach for patients with limited response to PARPi.

13.
Cancers (Basel) ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398194

RESUMEN

Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.

14.
Cancer Lett ; 597: 217080, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38908542

RESUMEN

XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL. The compassionate use of the XPO1 inhibitor selinexor in combination with chemotherapy showed favorable clinical outcomes in three refractory/relapsed (R/R) NKTL patients. Selinexor induced complete tumor regression and prolonged survival in sensitive xenografts but not in resistant xenografts. Transcriptomic profiling analysis indicated that sensitivity to selinexor was correlated with deregulation of the cell cycle machinery, as selinexor significantly suppressed the expression of cell cycle-related genes. CDK4/6 inhibitors were identified as sensitizers that reversed selinexor resistance. Mechanistically, targeting CDK4/6 could enhance the anti-tumor efficacy of selinexor via the suppression of CDK4/6-pRb-E2F-c-Myc pathway in resistant cells, while selinexor alone could dramatically block this pathway in sensitive cells. Overall, our study provids a preclinical proof-of-concept for the use of selinexor alone or in combination with CDK4/6 inhibitors as a novel therapeutic strategy for patients with R/R NKTL.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Proteína Exportina 1 , Hidrazinas , Triazoles , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína Exportina 1/antagonistas & inhibidores , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
EMBO Mol Med ; 16(9): 2132-2145, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122888

RESUMEN

Collecting duct carcinoma (CDC) is an aggressive rare subtype of kidney cancer with unmet clinical needs. Little is known about its underlying molecular alterations and etiology, primarily due to its rarity, and lack of preclinical models. This study aims to comprehensively characterize molecular alterations in CDC and identify its therapeutic vulnerabilities. Through whole-exome and transcriptome sequencing, we identified KRAS hotspot mutations (G12A/D/V) in 3/13 (23%) of the patients, in addition to known TP53, NF2 mutations. 3/13 (23%) patients carried a mutational signature (SBS22) caused by aristolochic acid (AA) exposures, known to be more prevalent in Asia, highlighting a geologically specific disease etiology. We further discovered that cell cycle-related pathways were the most predominantly dysregulated pathways. Our drug screening with our newly established CDC preclinical models identified a CDK9 inhibitor LDC000067 that specifically inhibited CDC tumor growth and prolonged survival. Our study not only improved our understanding of oncogenic molecular alterations of Asian CDC, but also identified cell-cycle machinery as a therapeutic vulnerability, laying the foundation for clinical trials to treat patients with such aggressive cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Femenino , Ratones , Mutación , Masculino , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ácidos Aristolóquicos/farmacología , Persona de Mediana Edad , Línea Celular Tumoral , Secuenciación del Exoma , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
16.
Clin Transl Med ; 14(6): e1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877653

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. METHODS: We describe an integrated whole-exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. RESULTS: We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke-associated Asian iCCAs. CONCLUSIONS: By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease.


Asunto(s)
Colangiocarcinoma , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas , Humanos , Colangiocarcinoma/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Masculino , Proteínas Proto-Oncogénicas/genética , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Neoplasias de los Conductos Biliares/genética , Alemania/epidemiología , Biomarcadores de Tumor/genética , Adulto , Genómica/métodos , Proteínas Tirosina Quinasas
17.
Plant Cell Rep ; 32(7): 971-83, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23571661

RESUMEN

The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.


Asunto(s)
Ácido Abscísico/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
18.
Cell Death Dis ; 14(8): 513, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563118

RESUMEN

Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome. Mechanistically, using an established NPC cellular model, we demonstrated that enhancer remodeling driven aberrant hyperactivation of NOTCH3 in chemoresistance NPC. We further showed that NOTCH3 upregulates SLUG to induce chemo-resistance of NPC cells and higher expression of SLUG have poorer prognosis. Genetic or pharmacological perturbation of NOTCH3 conferred chemosensitivity of NPC in vitro and overexpression of NOTCH3 enhanced chemoresistance of NPC in vivo. Together, these data indicated that genome-wide enhancer reprogramming activates NOTCH3 to confer chemoresistance of NPC, suggesting that targeting NOTCH3 may provide a potential therapeutic strategy to effectively treat advanced chemoresistant NPC.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Secuencias Reguladoras de Ácidos Nucleicos , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor Notch3/genética , Receptor Notch3/metabolismo
19.
MedComm (2020) ; 4(4): e284, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37334274

RESUMEN

Natural killer/T-cell lymphoma (NKTL) is an uncommon malignancy with poor prognosis and limited therapeutic options. Activating mutations of signal transducer and activator of transcription 3 (STAT3) are frequently found in patients with NKTL, suggesting that targeted inhibition of STAT3 is a potential therapeutic option for this disease. Here, we have developed a small molecule drug WB737 as a novel and potent STAT3 inhibitor that directly binds to the STAT3-Src homology 2 domain with high affinity. In addition, the binding affinity of WB737 to STAT3 is 250-fold higher than STAT1 and STAT2. Interestingly, WB737 is more selective for NKTL with STAT3-activating mutations in terms of growth inhibition and apoptotic induction when compared with Stattic. Mechanistically, WB737 inhibits both canonical and noncanonical STAT3 signaling via suppression of STAT3 phosphorylation at Tyr705 and Ser727, respectively, thereby inhibiting the expression of c-Myc and mitochondria-related genes. Moreover, WB737 inhibited STAT3 more potently than Stattic, resulting in a significant antitumor effect with undetectable toxicity, followed by almost complete tumor regression in an NKTL xenograft model harboring a STAT3-activating mutation. Taken together, these findings provide preclinical proof-of-concept for WB737 as a novel therapeutic strategy for the treatment of NKTL patients with STAT3-activating mutations.

20.
Clin Epigenetics ; 15(1): 19, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740715

RESUMEN

BACKGROUND: Natural killer/T-cell lymphoma (NKTL) is a rare type of aggressive and heterogeneous non-Hodgkin's lymphoma (NHL) with a poor prognosis and limited therapeutic options. Therefore, there is an urgent need to exploit potential novel therapeutic targets for the treatment of NKTL. Histone deacetylase (HDAC) inhibitor chidamide was recently approved for treating relapsed/refractory peripheral T-cell lymphoma (PTCL) patients. However, its therapeutic efficacy in NKTL remains unclear. METHODS: We performed a phase II clinical trial to evaluate the efficacy of chidamide in 28 relapsed/refractory NKTL patients. Integrative transcriptomic, chromatin profiling analysis and functional studies were performed to identify potential predictive biomarkers and unravel the mechanisms of resistance to chidamide. Immunohistochemistry (IHC) was used to validate the predictive biomarkers in tumors from the clinical trial. RESULTS: We demonstrated that chidamide is effective in treating relapsed/refractory NKTL patients, achieving an overall response and complete response rate of 39 and 18%, respectively. In vitro studies showed that hyperactivity of JAK-STAT signaling in NKTL cell lines was associated with the resistance to chidamide. Mechanistically, our results revealed that aberrant JAK-STAT signaling remodels the chromatin and confers resistance to chidamide. Subsequently, inhibition of JAK-STAT activity could overcome resistance to chidamide by reprogramming the chromatin from a resistant to sensitive state, leading to synergistic anti-tumor effect in vitro and in vivo. More importantly, our clinical data demonstrated that combinatorial therapy with chidamide and JAK inhibitor ruxolitinib is effective against chidamide-resistant NKTL. In addition, we identified TNFRSF8 (CD30), a downstream target of the JAK-STAT pathway, as a potential biomarker that could predict NKTL sensitivity to chidamide. CONCLUSIONS: Our study suggests that chidamide, in combination with JAK-STAT inhibitors, can be a novel targeted therapy in the standard of care for NKTL. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02878278. Registered 25 August 2016, https://clinicaltrials.gov/ct2/show/NCT02878278.


Asunto(s)
Linfoma de Células T Periférico , Neoplasias , Humanos , Biomarcadores , Línea Celular Tumoral , Cromatina , Ensamble y Desensamble de Cromatina , Metilación de ADN , Quinasas Janus/uso terapéutico , Linfoma de Células T Periférico/tratamiento farmacológico , Linfoma de Células T Periférico/genética , Transducción de Señal , Factores de Transcripción STAT/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA