Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell ; 178(1): 152-159.e11, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31178121

RESUMEN

Intrinsic and acquired drug resistance and induction of secondary malignancies limit successful chemotherapy. Because mutagenic translesion synthesis (TLS) contributes to chemoresistance as well as treatment-induced mutations, targeting TLS is an attractive avenue for improving chemotherapeutics. However, development of small molecules with high specificity and in vivo efficacy for mutagenic TLS has been challenging. Here, we report the discovery of a small-molecule inhibitor, JH-RE-06, that disrupts mutagenic TLS by preventing recruitment of mutagenic POL ζ. Remarkably, JH-RE-06 targets a nearly featureless surface of REV1 that interacts with the REV7 subunit of POL ζ. Binding of JH-RE-06 induces REV1 dimerization, which blocks the REV1-REV7 interaction and POL ζ recruitment. JH-RE-06 inhibits mutagenic TLS and enhances cisplatin-induced toxicity in cultured human and mouse cell lines. Co-administration of JH-RE-06 with cisplatin suppresses the growth of xenograft human melanomas in mice, establishing a framework for developing TLS inhibitors as a novel class of chemotherapy adjuvants.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Mutagénesis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Quinolinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/efectos adversos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mad2/metabolismo , Ratones , Ratones Desnudos , Ratones Transgénicos , Neoplasias/metabolismo , Neoplasias/patología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Quinolinas/química , Quinolinas/farmacología , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nature ; 609(7929): 1056-1062, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071163

RESUMEN

Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.


Asunto(s)
Microscopía por Crioelectrón , Antagonistas del Ácido Fólico , Metotrexato , Proteína Portadora de Folato Reducido , Aniones/metabolismo , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Carbono/metabolismo , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Humanos , Metotrexato/química , Metotrexato/metabolismo , Simulación de Dinámica Molecular , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Proteína Portadora de Folato Reducido/ultraestructura , Especificidad por Sustrato
3.
Br J Cancer ; 128(8): 1491-1502, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36759727

RESUMEN

BACKGROUND: Chaperon-mediated autophagy (CMA) has taken on a new emphasis in cancer biology. However, the roles of CMA in hypoxic tumours are poorly understood. We investigated the anti-tumour effects of the natural product ManA through the activation of CMA in tumour progression under hypoxia. METHODS: The effect of ManA on CMA activation was assessed in mouse xenograft models and cells. The gene expressions of HIF-1α, HSP90AA1, and transcription factor EB (TFEB) were analysed using The Cancer Genome Atlas (TCGA) datasets to assess the clinical relevance of CMA. RESULTS: ManA activates photoswitchable CMA reporter activity and inhibits Hsp90 chaperone function by disrupting the Hsp90/F1F0-ATP synthase complex. Hsp90 inhibition enhances the interaction between CMA substrates and LAMP-2A and TFEB nuclear localisation, suggesting CMA activation by ManA. ManA-activated CMA retards tumour growth and displays cooperative anti-tumour activity with anti-PD-1 antibody. TCGA datasets show that a combined expression of HSP90AA1High/HIF1AHigh or TFEBLow/HIF1AHigh is strongly correlated with poor prognosis in patients with lung cancer. CONCLUSIONS: ManA-induced CMA activation by modulating Hsp90 under hypoxia induces HIF-1α degradation and reduces tumour growth. Thus, inducing CMA activity by targeting Hsp90 may be a promising therapeutic strategy against hypoxic tumours.


Asunto(s)
Autofagia Mediada por Chaperones , Neoplasias Pulmonares , Ratones , Animales , Humanos , Hipoxia , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares , Autofagia/genética
4.
Proc Natl Acad Sci U S A ; 117(8): 4109-4116, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32041866

RESUMEN

The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is an essential lipid A biosynthetic enzyme that is conserved in the majority of gram-negative bacteria. It has emerged as an attractive novel antibiotic target due to the recent discovery of an LpxH-targeting sulfonyl piperazine compound (referred to as AZ1) by AstraZeneca. However, the molecular details of AZ1 inhibition have remained unresolved, stymieing further development of this class of antibiotics. Here we report the crystal structure of Klebsiella pneumoniae LpxH in complex with AZ1. We show that AZ1 fits snugly into the L-shaped acyl chain-binding chamber of LpxH with its indoline ring situating adjacent to the active site, its sulfonyl group adopting a sharp kink, and its N-CF3-phenyl substituted piperazine group reaching out to the far side of the LpxH acyl chain-binding chamber. Intriguingly, despite the observation of a single AZ1 conformation in the crystal structure, our solution NMR investigation has revealed the presence of a second ligand conformation invisible in the crystalline state. Together, these distinct ligand conformations delineate a cryptic inhibitor envelope that expands the observed footprint of AZ1 in the LpxH-bound crystal structure and enables the design of AZ1 analogs with enhanced potency in enzymatic assays. These designed compounds display striking improvement in antibiotic activity over AZ1 against wild-type K. pneumoniae, and coadministration with outer membrane permeability enhancers profoundly sensitizes Escherichia coli to designed LpxH inhibitors. Remarkably, none of the sulfonyl piperazine compounds occupies the active site of LpxH, foretelling a straightforward path for rapid optimization of this class of antibiotics.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/metabolismo , Aciltransferasas/genética , Proteínas Bacterianas/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Metabolismo de los Lípidos , Pruebas de Sensibilidad Microbiana , Mutación , Piperazinas/química , Piperazinas/farmacología , Conformación Proteica , Pirofosfatasas/genética
5.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33168727

RESUMEN

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Nitroquinolinas/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacología , ADN/biosíntesis , Daño del ADN/fisiología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Inhibidores Enzimáticos/administración & dosificación , Humanos , Proteínas Mad2/metabolismo , Ratones , Mutagénesis , Neoplasias/enzimología , Neoplasias/patología , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
6.
Acc Chem Res ; 54(7): 1623-1634, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33720682

RESUMEN

Bacterial infections caused by multi-drug-resistant Gram-negative pathogens pose a serious threat to public health. Gram-negative bacteria are characterized by the enrichment of lipid A-anchored lipopolysaccharide (LPS) or lipooligosaccharide (LOS) in the outer leaflet of their outer membrane. Constitutive biosynthesis of lipid A via the Raetz pathway is essential for bacterial viability and fitness in the human host. The inhibition of early-stage lipid A enzymes such as LpxC not only suppresses the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp., and other clinically important Gram-negative pathogens but also sensitizes these bacteria to other antibiotics. The inhibition of late-stage lipid A enzymes such as LpxH is uniquely advantageous because it has an extra mechanism of bacterial killing through the accumulation of toxic lipid A intermediates, rendering LpxH inhibition additionally lethal to Acinetobacter baumannii. Because essential enzymes of the Raetz pathway have never been exploited by commercial antibiotics, they are excellent targets for the development of novel antibiotics against multi-drug-resistant Gram-negative infections.This Account describes the ongoing research on characterizing the structure and inhibition of LpxC and LpxH, the second and fourth enzymes of the Raetz pathway of lipid A biosynthesis, in the laboratories of Dr. Pei Zhou and Dr. Jiyong Hong at Duke University. Our studies have elucidated the molecular basis of LpxC inhibition by the first broad-spectrum inhibitor, CHIR-090, as well as the mechanism underlying its spectrum of activity. Such an analysis has provided a molecular explanation for the broad-spectrum antibiotic activity of diacetylene-based LpxC inhibitors. Through the structural and biochemical investigation of LpxC inhibition by diacetylene LpxC inhibitors and the first nanomolar LpxC inhibitor, L-161,240, we have elucidated the intrinsic conformational and dynamics difference in individual LpxC enzymes near the active site. A similar approach has been taken to investigate LpxH inhibition, leading to the establishment of the pharmacophore model of LpxH inhibitors and subsequent structural elucidation of LpxH in complex with its first reported small-molecule inhibitor based on a sulfonyl piperazine scaffold.Intriguingly, although our crystallographic analysis of LpxC- and LpxH-inhibitor complexes detected only a single inhibitor conformation in the crystal lattice, solution NMR studies revealed the existence of multiple ligand conformations that together delineate a cryptic ligand envelope expanding the ligand-binding footprint beyond that observed in the crystal structure. By harnessing the ligand dynamics information and structural insights, we demonstrate the feasibility to design potent LpxC and LpxH inhibitors by merging multiple ligand conformations. Such an approach has enabled us to rationally design compounds with significantly enhanced potency in enzymatic assays and outstanding antibiotic activities in vitro and in animal models of bacterial infection. We anticipate that continued efforts with structure and ligand dynamics-based lead optimization will ultimately lead to the discovery of LpxC- and LpxH-targeting clinical antibiotics against a broad range of Gram-negative pathogens.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Simulación de Dinámica Molecular , Pirofosfatasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Bacterias Gramnegativas/enzimología , Humanos , Ligandos , Estructura Molecular , Pirofosfatasas/metabolismo
7.
Nature ; 533(7604): 557-560, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27088606

RESUMEN

Antibiotic-resistant bacterial infection is a serious threat to public health. Peptidoglycan biosynthesis is a well-established target for antibiotic development. MraY (phospho-MurNAc-pentapeptide translocase) catalyses the first and an essential membrane step of peptidoglycan biosynthesis. It is considered a very promising target for the development of new antibiotics, as many naturally occurring nucleoside inhibitors with antibacterial activity target this enzyme. However, antibiotics targeting MraY have not been developed for clinical use, mainly owing to a lack of structural insight into inhibition of this enzyme. Here we present the crystal structure of MraY from Aquifex aeolicus (MraYAA) in complex with its naturally occurring inhibitor, muraymycin D2 (MD2). We show that after binding MD2, MraYAA undergoes remarkably large conformational rearrangements near the active site, which lead to the formation of a nucleoside-binding pocket and a peptide-binding site. MD2 binds the nucleoside-binding pocket like a two-pronged plug inserting into a socket. Further interactions it makes in the adjacent peptide-binding site anchor MD2 to and enhance its affinity for MraYAA. Surprisingly, MD2 does not interact with three acidic residues or the Mg(2+) cofactor required for catalysis, suggesting that MD2 binds to MraYAA in a manner that overlaps with, but is distinct from, its natural substrate, UDP-MurNAc-pentapeptide. We have determined the principles of MD2 binding to MraYAA, including how it avoids the need for pyrophosphate and sugar moieties, which are essential features for substrate binding. The conformational plasticity of MraY could be the reason that it is the target of many structurally distinct inhibitors. These findings can inform the design of new inhibitors targeting MraY as well as its paralogues, WecA and TarO.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Pared Celular/metabolismo , Monosacáridos/biosíntesis , Nucleósidos/farmacología , Oligopéptidos/biosíntesis , Péptidos/farmacología , Transferasas/antagonistas & inhibidores , Transferasas/química , Antibacterianos/química , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Dominio Catalítico/efectos de los fármacos , Pared Celular/química , Pared Celular/efectos de los fármacos , Secuencia Conservada , Cristalografía por Rayos X , Diseño de Fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Magnesio/metabolismo , Modelos Moleculares , Nucleósidos/química , Péptidos/química , Peptidoglicano/biosíntesis , Unión Proteica , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad , Transferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
8.
Tetrahedron Lett ; 712021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34054153

RESUMEN

Rhodojaponin III is a grayanane-type diterpenoid natural product with a novel chemical scaffold. It shows potent antinociceptive activity and may represent a new class of natural non-opioid analgesics with a novel mode of action. We explored the Au(I)-catalyzed Conia-ene cyclization and the Mn(III)-mediated radical cyclization of alkynyl ketones for the synthesis of the bicyclo[3.2.1]octane fragment of rhodojaponin III. These strategies will be applicable in the synthesis of rhodojaponin III and analogs for future biological studies.

9.
Biochemistry ; 59(5): 682-693, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31899625

RESUMEN

(1,3)-ß-d-Glucan synthase (GS) catalyzes formation of the linear (1,3)-ß-d-glucan in the fungal cell wall and is a target of clinically approved antifungal antibiotics. The catalytic subunit of GS, FKS protein, does not exhibit significant sequence homology to other glycosyltransferases, and thus, significant ambiguity about its catalytic mechanism remains. One of the major technical barriers in studying GS is the absence of activity assay methods that allow characterization of the lengths and amounts of (1,3)-ß-d-glucan due to its poor solubility in water and organic solvents. Here, we report a successful development of a novel GS activity assay based on size-exclusion chromatography coupled with pulsed amperometric detection and radiation counting (SEC-PAD-RC), which allows for the simultaneous characterization of the amount and length of the polymer product. The assay revealed that the purified yeast GS produces glucan with a length of 6550 ± 760 mer, consistent with the reported degree of polymerization of (1,3)-ß-d-glucan isolated from intact cells. Pre-steady state kinetic analysis revealed a highly efficient but rate-determining chain elongation rate of 51.5 ± 9.8 s-1, which represents the first observation of chain elongation by a nucleotide-sugar-dependent polysaccharide synthase. Coupling the SEC-PAD-RC method with substrate analogue mechanistic probes provided the first unambiguous evidence that GS catalyzes non-reducing end polymerization. On the basis of these observations, we propose a detailed model for the catalytic mechanism of GS. The approaches described here can be used to determine the mechanism of catalysis of other polysaccharide synthases.


Asunto(s)
Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanos/metabolismo , Biocatálisis , Cromatografía en Gel , Glucosiltransferasas/química , Cinética , Polimerizacion , Proteoglicanos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Especificidad de la Especie , beta-Glucanos/química , beta-Glucanos/aislamiento & purificación
10.
Bioorg Chem ; 102: 104055, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663666

RESUMEN

The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is essential in lipid A biosynthesis and has emerged as a promising target for the development of novel antibiotics against multidrug-resistant Gram-negative pathogens. Recently, we reported the crystal structure of Klebsiella pneumoniae LpxH in complex with 1 (AZ1), a sulfonyl piperazine LpxH inhibitor. The analysis of the LpxH-AZ1 co-crystal structure and ligand dynamics led to the design of 2 (JH-LPH-28) and 3 (JH-LPH-33) with enhanced LpxH inhibition. In order to harness our recent findings, we prepared and evaluated a series of sulfonyl piperazine analogs with modifications in the phenyl and N-acetyl groups of 3. Herein, we describe the synthesis and structure-activity relationship of sulfonyl piperazine LpxH inhibitors. We also report the structural analysis of an extended N-acyl chain analog 27b (JH-LPH-41) in complex with K. pneumoniae LpxH, revealing that 27b reaches an untapped polar pocket near the di-manganese cluster in the active site of K. pneumoniae LpxH. We expect that our findings will provide designing principles for new LpxH inhibitors and establish important frameworks for the future development of antibiotics against multidrug-resistant Gram-negative pathogens.


Asunto(s)
Antinematodos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Piperazina/síntesis química , Piperazina/uso terapéutico , Antinematodos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Piperazina/farmacología , Relación Estructura-Actividad
11.
Chemistry ; 25(26): 6500-6504, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30912197

RESUMEN

As traditional small-molecule drug discovery programs focus on a relatively narrow range of chemical space, most human proteins are viewed as unreachable targets. Consequently, there is a strong interest in expanding the chemical space in drug discovery beyond traditional small molecules. Here, a strategy for the preparation of a broad natural-product-like macrocyclic library by using the tandem allylic oxidation/oxa-conjugate addition and macrocyclization reactions is reported. Cheminformatic analyses demonstrate that this tetrahydropyran-containing macrocyclic library shows a significant overlap with natural products in the chemical space. This approach can be used for designing libraries that may probe more deeply into natural-product-like space.

12.
Bioorg Med Chem Lett ; 28(16): 2746-2750, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29503022

RESUMEN

NF00659B1 is a novel α-pyrone diterpenoid natural product with potent anti-colon cancer activity. A stereoselective approach to the 2,2-dimethyl oxepanol core of NF00659B1 is described enlisting a sequence of olefinic ester ring-closing metathesis, epoxidation, and Grignard addition. This strategy paves the way to a total synthesis of NF00659B1 for further biological studies.


Asunto(s)
Alquenos/síntesis química , Productos Biológicos/síntesis química , Alquenos/química , Productos Biológicos/química , Conformación Molecular , Estereoisomerismo
13.
Chemistry ; 23(30): 7180-7184, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28393406

RESUMEN

8-Membered cyclic ethers are found in a wide range of natural products; however, they are challenging synthetic targets due to enthalpic and entropic barriers. The gold(I)-catalyzed intramolecular dehydrative alkoxylation of ω-hydroxy allylic alcohols was explored to stereoselectively construct α,α'-cis-oxocenes and further applied in a formal synthesis of (+)-laurencin. The gold(I)-catalyzed intramolecular dehydrative alkoxylation may constitute an alternative method for the synthesis of molecular building blocks and natural products that contain highly functionalized 8-membered cyclic ethers.


Asunto(s)
Productos Biológicos/síntesis química , Éteres Cíclicos/síntesis química , Oro/química , Oxocinas/síntesis química , Productos Biológicos/química , Catálisis , Éteres Cíclicos/química , Oxocinas/química , Propanoles/síntesis química , Propanoles/química , Estereoisomerismo
14.
Bioorg Med Chem ; 25(12): 3077-3086, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28416100

RESUMEN

Histone acetylation is an extensively investigated post-translational modification that plays an important role as an epigenetic regulator. It is controlled by histone acetyl transferases (HATs) and histone deacetylases (HDACs). The overexpression of HDACs and consequent hypoacetylation of histones have been observed in a variety of different diseases, leading to a recent focus of HDACs as attractive drug targets. The natural product largazole is one of the most potent natural HDAC inhibitors discovered so far and a number of largazole analogs have been prepared to define structural requirements for its HDAC inhibitory activity. However, previous structure-activity relationship studies have heavily investigated the macrocycle region of largazole, while there have been only limited efforts to probe the effect of various zinc-binding groups (ZBGs) on HDAC inhibition. Herein, we prepared a series of largazole analogs with various ZBGs and evaluated their HDAC inhibition and cytotoxicity. While none of the analogs tested were as potent or selective as largazole, the Zn2+-binding affinity of each ZBG correlated with HDAC inhibition and cytotoxicity. We expect that our findings will aid in building a deeper understanding of the role of ZBGs in HDAC inhibition as well as provide an important basis for the future development of new largazole analogs with non-thiol ZBGs as novel therapeutics for cancer.


Asunto(s)
Depsipéptidos/química , Depsipéptidos/farmacología , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Tiazoles/química , Tiazoles/farmacología , Zinc/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Depsipéptidos/síntesis química , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Relación Estructura-Actividad , Tiazoles/síntesis química
15.
J Proteome Res ; 15(8): 2688-96, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27322910

RESUMEN

Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.


Asunto(s)
Lignanos/metabolismo , Pliegue de Proteína , Estabilidad Proteica , Antineoplásicos/metabolismo , Productos Biológicos , Células Cultivadas , Filaminas/metabolismo , Humanos , Marcaje Isotópico , Ligandos , Oxidación-Reducción , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Saururaceae/química
16.
Nat Prod Rep ; 33(12): 1393-1424, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27714078

RESUMEN

Covering: 2005 to 2016Clavosolides A-D and cyanolide A are glycosidic macrolides and represent a new family of marine natural products. They possess a number of unusual structural features and have attracted considerable interest from the synthetic community. This review presents a comprehensive survey of all aspects of the clavosolides A-D and cyanolide A. Specific topics include isolation, structure determination, biological activity, and synthetic approaches.


Asunto(s)
Productos Biológicos/síntesis química , Glicósidos/síntesis química , Macrólidos/síntesis química , Productos Biológicos/química , Glicósidos/química , Macrólidos/química , Biología Marina , Estructura Molecular , Estereoisomerismo
17.
Biochem Biophys Res Commun ; 461(3): 507-12, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25896764

RESUMEN

Subglutinol A is an immunosuppressive α-pyrone diterpenoid isolated from Fusarium subglutinans that exhibits osteogenic activity. Several non-steroid mycotoxins isolated from various strains of Fusarium fungi exhibit female steroid hormone activities. In this study, we characterized the estrogenic activity of subglutinol A (1). Subglutinol A blocked the 17ß-estradiol-induced activation of reporter plasmids and endogenous estrogen-responsive target genes in a dose-dependent manner and efficiently destabilized ER proteins as shown using the estrogen receptor antagonist ICI 182,780. Subglutinol A also displaced the specific binding of [(3)H]17ß-estradiol from ER in MCF-7 whole-cell ligand binding assays. These data demonstrate the potential of subglutinol A as an ER antagonist though its competition with 17ß-estradiol for direct ER association.


Asunto(s)
Diterpenos/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Fusarium/química , Inmunosupresores/farmacología , Pironas/farmacología , Secuencia de Bases , Cartilla de ADN , Humanos , Células MCF-7 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Tetrahedron Lett ; 56(23): 3120-3122, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26236051

RESUMEN

The tandem allylic oxidation/oxa-conjugate addition reaction promoted by the gem-disubstituent effect in conjunction with the NHC-mediated oxidative esterification was explored for the facile synthesis of clavosolide A.

19.
Chemistry ; 20(33): 10204-12, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25043880

RESUMEN

Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.


Asunto(s)
Productos Biológicos/síntesis química , Técnicas de Química Sintética/métodos , Productos Biológicos/química , Carbono/química , Técnicas de Química Sintética/economía , Descubrimiento de Drogas , Humanos
20.
Bioorg Med Chem Lett ; 24(16): 3728-31, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25070421

RESUMEN

Largazole is a potent class I selective histone deacetylase (HDAC) inhibitor. The majority of largazole analogues to date have modified the thiazole-thiazoline and the warhead moiety. In order to elucidate class I-specific structure-activity relationships, a series of analogues with modifications in the valine or the linker region were prepared and evaluated for their class I isoform selectivity. The inhibition profile showed that the C2 position of largazole has an optimal steric requirement for efficient HDAC inhibition and that substitution of the trans-alkene in the linker with an aromatic group results in complete loss of activity. This data will aid the design of class I isoform selective HDAC inhibitors.


Asunto(s)
Depsipéptidos/farmacología , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Tiazoles/farmacología , Depsipéptidos/síntesis química , Depsipéptidos/química , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA