Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 19(4): 2236-2239, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30486975

RESUMEN

Microstructure and texture of P-type 75%Sb2Te3-25%Bi2Te3 alloy fabricated by using gas-atomization and extrusion processes was investigated. The microstructure of the gas-atomized powders exhibited fine grains with needle shape. After hot extrusion, grain size was characterized by fine and equiaxed grains due to dynamic recrystallization by severe deformation. (0001) basal planes of the extruded specimens were preferentially orientated parallel to extrusion direction. As extrusion temperature, fraction of the basal planes was increased.

2.
ACS Appl Mater Interfaces ; 14(8): 10394-10406, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188737

RESUMEN

Manufacturing an economically viable, efficient commercial thermoelectric (TE) module is essential for power generation and refrigeration. However, mediocre TE properties, lack of good mechanical stability of the material, and significant difficulties involved in the manufacturing of large-scale powder as well as bulk samples hinder the potential applications of the modules. Herein, an economically feasible single-step water atomization (WA) is employed to synthesize BST powder (2 kg) by Cu doping within a short time and consolidated into large-scale bulk samples (500 g) for the first time with a diameter of 50 mm and a thickness of about 40 mm using spark plasma sintering (SPS). The incorporation of Cu into BST greatly boosts the carrier concentration, leading to a significant increase in electrical conductivity, and inhibits the bipolar thermal conductivity by 73%. Synchronously, the lattice contribution (κL) is greatly reduced by the effective scattering of phonons by comprising fine-grain boundaries and point defects. Therefore, the peak ZT is shifted to the mid-temperature range and obtained a maximum of ∼1.31 at 425 K and a ZTave of 1.24 from 300 to 500 K for the BSTCu0.05 sample, which are considerably greater than those of the bare BST sample. Moreover, the maximum compressive mechanical strength of large-size samples manufactured by the WA-SPS process is measured as 102 MPa, which is significantly higher than commercial zone melting samples. The thermoelectric module assembled with WA-SPS-synthesized BSTCu0.05 and commercial n-type BTS material manifests an outstanding cooling performance (-19.4 °C), and a maximum output power of 6.91 W is generated at ΔT ∼ 200 K. These results prove that the BSTCux samples are eminently suitable for the fabrication of industrial thermoelectric modules.

3.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630867

RESUMEN

Transition metal dichalcogenide-based quantum dots are promising materials for applications in diverse fields, such as sensors, electronics, catalysis, and biomedicine, because of their outstanding physicochemical properties. In this study, we propose bio-imaging characteristics through utilizing water-soluble MoS2 quantum dots (MoS2-QDs) with two different sizes (i.e., ~5 and ~10 nm). The structural and optical properties of the fabricated metallic phase MoS2-QDs (m-MoS2-QDs) were characterized by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and photoluminescence. The synthesized m-MoS2-QDs showed clear photophysical characteristic peaks derived from the quantum confinement effect and defect sites, such as oxygen functional groups. When the diameter of the synthesized m-MoS2-QD was decreased, the emission peak was blue-shifted from 436 to 486 nm under excitation by a He-Cd laser (325 nm). Density functional theory calculations confirmed that the size decrease of m-MoS2-QDs led to an increase in the bandgap because of quantum confinement effects. In addition, when incorporated into the bio-imaging of HeLa cells, m-MoS2-QDs were quite biocompatible with bright luminescence and exhibited low toxicity. Our results are commercially applicable for achieving high-performance bio-imaging probes.

4.
Materials (Basel) ; 14(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205903

RESUMEN

In this work, Bi0.5Sb1.5Te3 materials were produced by an economically viable and time efficient water atomization process. The powder samples were heat treated at different temperatures (673 K, 723 K, 743 K, 773 K, 803 K, and 823 K) followed by spark plasma sintering (SPS). It was found that the Te evaporated slightly at 723 K and 743 K and became dominated at 773 K, 803 K, and 823 K, which severely influences the thermoelectric properties. The electrical conductivity was significantly improved for over 803 K heat treated samples due to the remarkable improvement in hole concentration. The power factor values for the 803 K and 823 K samples were significantly larger at T > 350 K compared to other samples. Consequently, the peak ZT of 0.92 at 350 K was obtained for the 803 K sample, which could be useful in commercial thermoelectric power generation.

5.
ACS Appl Mater Interfaces ; 13(45): 54339-54347, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34747615

RESUMEN

It is generally accepted that while efficient suppression of molecular vibration is inevitable for purely organic phosphors due to their long emission lifetime in the regime of 1 ms or longer, fluorophores having a lifetime in the nanoseconds regime are not sensitive to collisional quenching. Here, however, we demonstrate that a fluorophore, 2,5-bis(hexyloxy)terephthaldehyde (BHTA), capable of having hydrogen bonding (H bonding) via its two aldehyde groups can have a largely enhanced (450%) fluorescence quantum yield (QY) in amorphous poly(acrylic acid) (PAA) matrix compared to its crystalline powder. We ascribe this enhanced QY to the efficient suppression of molecular vibrations via intermolecular H bonding. We confirm this feasibility by conducting temperature-dependent fluorescence emission intensity measurement. As gaseous phenol can intervene with the H bonding between BHTA and PAA, interestingly, BHTA embedded in PAA can selectively detect gaseous phenol by a sharp fluorescence emission intensity drop that is visibly recognizable by the naked eye. The results provide an insightful molecular design strategy for a fluorophore and fluorometric sensory system design for enhanced photoluminescence QY and convenient detection of various volatile organic compounds.

6.
Materials (Basel) ; 14(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500963

RESUMEN

Developing inexpensive and rapid fabrication methods for high efficiency thermoelectric alloys is a crucial challenge for the thermoelectric industry, especially for energy conversion applications. Here, we fabricated large amounts of p-type Cu0.07Bi0.5Sb1.5Te3 alloys, using water atomization to control its microstructure and improve thermoelectric performance by optimizing its initial powder size. All the water atomized powders were sieved with different aperture sizes, of 32-75 µm, 75-125 µm, 125-200 µm, and <200 µm, and subsequently consolidated using hot pressing at 490 °C. The grain sizes were found to increase with increasing powder particle size, which also increased carrier mobility due to improved carrier transport. The maximum electrical conductivity of 1457.33 Ω-1 cm-1 was obtained for the 125-200 µm samples due to their large grain sizes and subsequent high mobility. The Seebeck coefficient slightly increased with decreasing particle size due to scattering of carriers at fine grain boundaries. The higher power factor values of 4.20, 4.22 × 10-3 W/mk2 were, respectively, obtained for large powder specimens, such as 125-200 µm and 75-125 µm, due to their higher electrical conductivity. In addition, thermal conductivity increased with increasing particle size due to the improvement in carriers and phonons transport. The 75-125 µm powder specimen exhibited a relatively high thermoelectric figure of merit, ZT of 1.257 due to this higher electric conductivity.

7.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205908

RESUMEN

The design of photoactive materials and interface engineering between organic/inorganic layers play a critical role in achieving enhanced performance in energy-harvesting devices. Two-dimensional transitional dichalcogenides (TMDs) with excellent optical and electronic properties are promising candidates in this regard. In this study, we demonstrate the fabrication of size-controlled MoS2 quantum dots (QDs) and present fundamental studies of their optical properties and their application as a hole-transport layer (HTL) in organic solar cells (OSCs). Optical and structural analyses reveal that the as-prepared MoS2 QDs show a fluorescence mechanism with respect to the quantum confinement effect and intrinsic/extrinsic states. Moreover, when incorporated into a photovoltaic device, the MoS2 QDs exhibit a significantly enhanced performance (5/10-nanometer QDs: 8.30%/7.80% for PTB7 and 10.40%/10.17% for PTB7-Th, respectively) compared to those of the reference device (7.24% for PTB7 and 9.49% for PTB7-Th). We confirm that the MoS2 QDs clearly offer enhanced transport characteristics ascribed to higher hole-mobility and smoother root mean square (Rq) as a hole-extraction material. This approach can enable significant advances and facilitate a new avenue for realizing high-performance optoelectronic devices.

8.
RSC Adv ; 10(46): 27418-27423, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35516959

RESUMEN

The emergence of fluorescent graphene quantum dots (GQDs) is expected to enhance the usefulness of quantum dots (QDs), in terms of their unique luminescence, photostability, low toxicity, chemical resistance, and electron transport properties. Here we prepared blue-photoluminescent polyethylene glycol GQDs (PEG-GQDs) through PEG surface passivation. The photoluminescence (PL) quantum yield (QY) of PEG-GQDs with 320 nm excitation was about 4.9%, which was higher than that of pure GQDs. The as-fabricated PEG-GQDs with high QY were then used as light-emitting diode (PGQD-LED) emitters, in which the GQDs were incorporated into polymeric host layers in a multilayer electroluminescent device; blue emission with a luminance exceeding 800 cd m-2 was achieved, thus demonstrating the potential of PEG-GQDs as emitters in electroluminescence applications. Furthermore, the fluorescence mechanism of PEG-GQDs was investigated and proved that the origin of strong fluorescence of PEG-GQDs is associated with the luminescence from intrinsic states. The highly fluorescent PEG-GQDs will allow new devices, such as multicolor LEDs, to be developed with extraordinary properties, by tailoring the intrinsic and extrinsic states.

9.
ACS Appl Mater Interfaces ; 11(45): 42520-42527, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31633327

RESUMEN

With the rapid development of wearable and flexible electronics, graphene has been intensively studied for the transparent, hole transport electrode layer (HTL) of field-effect transistors, light-emitting diodes, and organic photovoltaic (OPV) cells. To modulate the sheet resistance and the work function of graphene as a HTL, the surface doping is versatile while retaining high transparency. In this work, we used a chemical doping method to control the charge carrier density, band gap, and work function of graphene with minimizing the damage of the carbon network, for which metal chlorides (NaCl, KCl, and AuCl3) were used as chemical dopants. The high-quality graphene flakes were synthesized with large lateral sizes of more than 5 µm using ternary graphite intercalation compounds. Interestingly, the AuCl3-doped graphene flake film with a film thickness of about 20 nm showed the lowest reported sheet resistance of ∼249 Ω/sq with ∼75% transmittance. Furthermore, it could control the work function from 4.32 to 5.1 eV. The interfacial dipole complexes of metal cations with a low work function and the reactive radicals such as -OH were discussed to explain this result. For the practical application, an OPV device using the AuCl3-doped graphene flake film as the HTL was fabricated and it demonstrated enhanced power conversion efficiency while maintaining high optical transparency in visible light.

10.
Materials (Basel) ; 11(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388757

RESUMEN

In this research, various processing conditions were implemented to enhance the mechanical properties of Al-Si alloys. The silicon content was varied from hypoeutectic (Si-10 wt.%) to eutectic (Si-12.6 wt.%) and hypereutectic (Si-14 wt.%) for the preparation of Al-XSi-3Cu-0.5Fe-0.6 Mg (X = 10⁻14%) alloys using die casting. Subsequently, these alloys were hot-extruded with an optimum extrusion ratio (17:1) at 400 °C to match the output extruded bar to the compressor size. An analysis of the microstructural features along with a chemical compositional analysis were carried out using scanning electron microscope along with energy dispersive X-ray spectroscopy and transmission electron microscope. The SEM micrographs of the extruded samples displayed cracks in primary Si, and the intermetallic (ß-Al5FeSi) phase was fragmented accordingly. In addition, the silicon phase was homogenously distributed, and the size remained constant. The mechanical properties of the extruded samples were enhanced by the increase of silicon content, and consequently the ductility decreased. By implementing proper T6 heat treatment parameters, coherent Al2Cu phases were formed in the Al matrix, and the Si phase was gradually increased along with the silicon content. Therefore, high tensile strength was achieved, reaching values for the Al-XSi-3Cu-0.5Fe-0.6Mg (X = 10⁻14%) alloys of 366 MPa, 388 MPa, and 420 MPa, respectively.

12.
Waste Manag ; 33(3): 730-4, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23177569

RESUMEN

In this study, a method which is environmentally sound, time and energy efficient has been used for recovery of indium from used liquid crystal display (LCD) panels. In this method, indium tin oxide (ITO) glass was crushed to micron size particles in seconds via high energy ball milling (HEBM). The parameters affecting the amount of dissolved indium such as milling time, particle size, effect time of acid solution, amount of HCl in the acid solution were tried to be optimized. The results show that by crushing ITO glass to micron size particles by HEBM, it is possible to extract higher amount of indium at room temperature than that by conventional methods using only conventional shredding machines. In this study, 86% of indium which exists in raw materials was recovered about in a very short time.


Asunto(s)
Indio/aislamiento & purificación , Eliminación de Residuos/métodos , Cristales Líquidos , Tamaño de la Partícula , Residuos Sólidos , Soluciones , Compuestos de Estaño/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA