Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37837112

RESUMEN

The paradigm of the Internet of Things (IoT) and edge computing brings a number of heterogeneous devices to the network edge for monitoring and controlling the environment. For reacting to events dynamically and automatically in the environment, rule-enabled IoT edge platforms operate the deployed service scenarios at the network edge, based on filtering events to perform control actions. However, due to the heterogeneity of the IoT edge networks, deploying a consistent rule context for operating a consistent rule scenario on multiple heterogeneous IoT edge platforms is difficult because of the difference in protocols and data formats. In this paper, we propose a transparent rule enablement, based on the commonization approach, for enabling a consistent rule scenario in heterogeneous IoT edge networks. The proposed IoT Edge Rule Agent Platform (IERAP) deploys device proxies to share consistent rules with IoT edge platforms without considering the difference in protocols and data formats. Therefore, each device proxy only considers the translation of the corresponding platform-specific and common formats. Also, the rules are deployed by the corresponding device proxy, which enables rules to be deployed to heterogeneous IoT edge platforms to perform the consistent rule scenario without considering the format and underlying protocols of the destination platform.

2.
Sensors (Basel) ; 20(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560217

RESUMEN

Intralogistics is a technology that optimizes, integrates, automates, and manages the logistics flow of goods within a logistics transportation and sortation center. As the demand for parcel transportation increases, many sortation systems have been developed. In general, the goal of sortation systems is to route (or sort) parcels correctly and quickly. We design an n-grid sortation system that can be flexibly deployed and used at intralogistics warehouse and develop a collaborative multi-agent reinforcement learning (RL) algorithm to control the behavior of emitters or sorters in the system. We present two types of RL agents, emission agents and routing agents, and they are trained to achieve the given sortation goals together. For the verification of the proposed system and algorithm, we implement them in a full-fledged cyber-physical system simulator and describe the RL agents' learning performance. From the learning results, we present that the well-trained collaborative RL agents can optimize their performance effectively. In particular, the routing agents finally learn to route the parcels through their optimal paths, while the emission agents finally learn to balance the inflow and outflow of parcels.

3.
Tumour Biol ; 41(12): 1010428319892790, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31815594

RESUMEN

In the last few decades, there has been notable progress in understanding the molecular and cellular basis of the complex process involved in cancer. In this context, tumor-promoting inflammation, dysregulation of apoptotic signaling, tissue invasion and metastasis, and cancer microenvironment have recently attracted interest from researchers. Irisin is a hormone released by muscles during exercise and it directly acts on key functional cells involving energy metabolism and homeostasis. Recently, many studies have reported the anticancer effect of irisin against different types of cancer. Translation of these findings to clinical practice for the diagnosis and treatment of several types of cancer is urgently required. In this review, we summarized preclinical and clinical studies on the anticancer effects of irisin in various types of cancer, and also discussed the mechanisms activated by irisin to suppress cancer pathogenesis. We further discussed the serum level of irisin related to different types of cancer to understand more clearly the association between irisin concentration and tumor burden. This review may serve as a solid foundation for researchers and physicians to support basic and clinical studies on irisin as a promising strategy for early diagnosis and treatment of a various types of cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinogénesis/genética , Fibronectinas/genética , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias/genética , Neoplasias/patología , Animales , Humanos , Microambiente Tumoral/genética
4.
Molecules ; 23(1)2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29346266

RESUMEN

The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD) during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.


Asunto(s)
Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Desarrollo Fetal , Melatonina/metabolismo , Animales , Ritmo Circadiano , Femenino , Humanos , Exposición Materna , Neuroprotección , Embarazo , Efectos Tardíos de la Exposición Prenatal
5.
Molecules ; 23(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544500

RESUMEN

Irisin, a skeletal muscle-secreted myokine, produced in response to physical exercise, has protective functions in both the central and the peripheral nervous systems, including the regulation of brain-derived neurotrophic factors. In particular, irisin is capable of protecting hippocampus. Since this area is the region of the brain that is most susceptible to Alzheimer's disease (AD), such beneficial effect may inhibit or delay the emergence of neurodegenerative diseases, including AD. Also, the factors engaged in irisin formation appear to suppress Aß aggregation, which is the pathological hallmark of AD. This review is based on the hypothesis that irisin produced by physical exercise helps to control AD progression. Herein, we describe the physiology of irisin and its potential role in delaying or preventing AD progression in human.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Ejercicio Físico , Fibronectinas/metabolismo , Estrés del Retículo Endoplásmico , Hipocampo/patología , Humanos , Neuroprotección
6.
Int J Mol Sci ; 18(8)2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28771183

RESUMEN

Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive immune responses. Innate immune receptors and lymphocytes (T and B) are modulated by autophagy, which represent innate and adaptive immune responses, respectively. Numerous studies have demonstrated beneficial roles for autophagy induction as well as its suppression of cancer cells. Autophagy may induce either survival or death depending on the cell/tissue type. Radiation therapy is commonly used to treat cancer by inducing autophagy in human cancer cell lines. Additionally, melatonin appears to affect cancer cell death by regulating programmed cell death. In this review, we summarize the current understanding of autophagy and its regulation in cancer.


Asunto(s)
Autofagia/inmunología , Linfocitos B/inmunología , Inmunidad Celular , Inmunidad Innata , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Linfocitos B/patología , Línea Celular Tumoral , Humanos , Neoplasias/patología , Linfocitos T/patología
7.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632163

RESUMEN

Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder (ASD). FXS with ASD results from the loss of fragile X mental retardation (fmr) gene products, including fragile X mental retardation protein (FMRP), which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical features of ASD have been studied, the correlation between altered circadian rhythms and FXS with ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate its neuroprotective role during the developmental period in individuals with ASD. Thus, the present review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities, are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse effects of variations in the circadian rhythm.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Melatonina/uso terapéutico , Ansiedad , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/genética , Humanos , Discapacidad Intelectual , Aprendizaje , Melatonina/metabolismo , Melatonina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Factores de Riesgo , Convulsiones/tratamiento farmacológico , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/tratamiento farmacológico
8.
J Phys Ther Sci ; 29(4): 760-762, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28533625

RESUMEN

[Purpose] The purpose of the present review is to discuss recent published articles in the understanding of efficacy of interventional exercise on autistic Fragile X syndrome (FXS) with special emphasis on its significance in clinical application in patients. [Methods] This review article was identified scientifically and/or clinically relevant articles from PubMed that directly/indirectly met the inclusion criteria. [Results] Mutation of fragile X mental retardation 1 (fmr1) gene on the X chromosome is related with loss of fragile X mental retardation protein (FMRP) that affecting physiological and behavioral abnormalities. Autistic FXS individuals exhibit disturbed sleep and altered circadian behavior. Although the underlying molecular mechanisms are not been fully explored, interventional exercise in autistic FXS has been clinically used for the treatment of physiological and behavioral abnormalities as well as psychiatric disorder in autistic FXS. [Conclusion] This review describes beneficial efficacy of interventional exercise and its controversy in patients with autistic FXS. This review also provides interventional strategies for clinicians and scientists that the way of neurophysiological approaches according to the level of physical and behavioral abnormalities.

9.
Int J Mol Sci ; 16(8): 19657-70, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26295390

RESUMEN

Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS). Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.


Asunto(s)
Quimioterapia Combinada/métodos , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Traumatismos del Sistema Nervioso/prevención & control , Envejecimiento/fisiología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
10.
Int J Mol Sci ; 16(11): 26880-913, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26569225

RESUMEN

Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.


Asunto(s)
Aberraciones Cromosómicas , Terapia Combinada/métodos , Rayos gamma/uso terapéutico , Neoplasias/terapia , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Apoptosis/genética , Apoptosis/efectos de la radiación , Autofagia/genética , Autofagia/efectos de la radiación , Análisis Citogenético , Daño del ADN/efectos de la radiación , Inestabilidad Genómica , Humanos , Mitosis/efectos de la radiación , Necrosis/genética , Necrosis/patología , Neoplasias/genética , Neoplasias/patología , Terapia por Rayos X
11.
J Phys Ther Sci ; 27(6): 1743-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26180311

RESUMEN

[Purpose] The purpose of this study was to determine whether muscle activity and pressure-induced pain in the upper extremities are affected by smartphone use, and to compare the effects of phone handling with one hand and with both hands. [Subjects] The study subjects were asymptomatic women 20-22 years of age. [Methods] The subjects sat in a chair with their feet on the floor and the elbow flexed, holding a smartphone positioned on the thigh. Subsequently, the subjects typed the Korean anthem for 3 min, one-handed or with both hands. Each subject repeated the task three times, with a 5-min rest period between tasks to minimize fatigue. Electromyography (EMG) was used to record the muscle activity of the upper trapezius (UT), extensor pollicis longus (EPL), and abductor pollicis (AP) during phone operation. We also used a dolorimeter to measure the pressure-induced pain threshold in the UT. [Results] We observed higher muscle activity in the UT, AP, and EPL in one-handed smartphone use than in its two-handed use. The pressure-induced pain threshold of the UT was lower after use of the smartphone, especially after one-handed use. [Conclusion] Our results show that smartphone operation with one hand caused greater UT pain and induced increased upper extremity muscle activity.

12.
J Phys Ther Sci ; 27(12): 3933-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26834383

RESUMEN

[Purpose] The intensity of therapeutic physical exercise is complex and sometimes controversial in patients with neural injuries. This review assessed whether therapeutic physical exercise is beneficial according to the intensity of the physical exercise. [Methods] The authors identified clinically or scientifically relevant articles from PubMed that met the inclusion criteria. [Results] Exercise training can improve body strength and lead to the physiological adaptation of skeletal muscles and the nervous system after neural injuries. Furthermore, neurophysiological and neuropathological studies show differences in the beneficial effects of forced therapeutic exercise in patients with severe or mild neural injuries. Forced exercise alters the distribution of muscle fiber types in patients with neural injuries. Based on several animal studies, forced exercise may promote functional recovery following cerebral ischemia via signaling molecules in ischemic brain regions. [Conclusions] This review describes several types of therapeutic forced exercise and the controversy regarding the therapeutic effects in experimental animals versus humans with neural injuries. This review also provides a therapeutic strategy for physical therapists that grades the intensity of forced exercise according to the level of neural injury.

13.
J Pineal Res ; 56(3): 264-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24484372

RESUMEN

In Asia, the incidence of colorectal cancer has been increasing gradually due to a more Westernized lifestyle. The aim of study is to determine the interaction between melatonin-induced cell death and cellular senescence. We treated HCT116 human colorectal adenocarcinoma cells with 10 µm melatonin and determined the levels of cell death-related proteins and evaluated cell cycle kinetics. The plasma membrane melatonin receptor, MT1, was significantly decreased by melatonin in a time-dependent manner, whereas the nuclear receptor, RORα, was increased only after 12 hr treatment. HCT116 cells, which upregulated both pro-apoptotic Bax and anti-apoptotic Bcl-xL in the early response to melatonin treatment, activated autophagic as well as apoptotic machinery within 18 hr. Melatonin decreased the S-phase population of the cells to 57% of the control at 48 hr, which was concomitant with a reduction in BrdU-positive cells in the melatonin-treated cell population. We found not only marked attenuation of E- and A-type cyclins, but also increased expression of p16 and p-p21. Compared to the cardiotoxicity of Trichostatin A in vitro, single or cumulative melatonin treatment induced insignificant detrimental effects on neonatal cardiomyocytes. We found that 10 µm melatonin activated cell death programs early and induced G1-phase arrest at the advanced phase. Therefore, we suggest that melatonin is a potential chemotherapeutic agent for treatment of colon cancer, the effects of which are mediated by regulation of both cell death and senescence in cancerous cells with minimized cardiotoxicity.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Melatonina/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Fase G1 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Ratas
14.
J Pineal Res ; 56(2): 175-88, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24313305

RESUMEN

The purpose of this study was to determine the effects of melatonin intervention on gastrocnemius remodeling in rats with collagenase-induced knee instability. Type VII collagenase was injected into the right knee to induce joint laxity with cartilage destruction. Melatonin (MT; 10 mg/kg) injection was performed twice daily subcutaneously, and treadmill exercise (Ex; 11 m/min) was conducted for 1 hr/day at a frequency of 5 days/wk for 4 wks. The gastrocnemius mass, which was reduced with collagenase injection only (Veh), was increased with collagenase injection with melatonin treatment with and without exercise in the early phase, and the mass in both limbs was significantly different in the Veh compared with the MT group. However, there was an increase in the relative muscle weight to body weight ratio in the Veh group at the advanced stage. Insulin-like growth factor receptor (IGF-IR) was downregulated in the Veh group, whereas IGF-IR was upregulated in the MT and MT + Ex groups. Joint laxity induced enhancement of autophagic proteolysis (LC3 II) in the muscle, which was recovered to values similar to those in the normal control group (Con) compared with those in the MT and MT+Ex groups. Although intra-articular collagenase increased the total C/EBP homology protein (CHOP) levels at 1 wk and decreased them at 4 wks in the Veh group, CHOP in the nucleus was upregulated continuously. Prolonged melatonin treatment with and without exercise intervention suppressed nuclear localization of ATF4 and CHOP with less activation of caspase-3, at the advanced phase. Moreover, the interventions promoted the expression of myosin heavy chain (MHC) isoforms under the control of myogenin. Concomitant with a beneficial effect of melatonin with and without exercise, step length of the saline-injected limb and the collagenase-injected supporting side was maintained at values similar to those in control rats. Taken together, the findings demonstrate that melatonin with and without exercise accelerate remodeling of the gastrocnemius through inhibition of nuclear CHOP in rats with collagenase-induced knee instability.


Asunto(s)
Autofagia/efectos de los fármacos , Colagenasas/metabolismo , Melatonina/farmacología , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Factor de Transcripción CHOP/metabolismo , Animales , Masculino , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley , Rodilla de Cuadrúpedos/efectos de los fármacos
15.
J Pineal Res ; 57(1): 53-66, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816289

RESUMEN

Osteoarthritis (OA) is a major cause of disability in the adult population. The purpose of this study was to evaluate the effects of melatonin with graded dosage on extracellular matrix synthesis and cellular death in response to cartilage damage in vitro and in vivo. TNF-α reduced the viability of primary cultured chondrocytes and extracellular matrix protein, but melatonin at concentrations of 1 µm and 1 nm restored them. Rats with knee instability induced by intra-articular collagenase were used for the in vivo study. Joint parameters were significantly augmented in the collagenase injection-only group but not in the melatonin-alone or melatonin+exercise groups, as cartilage degeneration progressed. Serum TNF-α and IL-6 were upregulated by collagenase injection, which was attenuated by melatonin with and without exercise in the early phase. TGF-ß1 mRNA was either conserved or enhanced by melatonin with and without exercise at the early phase. In particular, melatonin combined with exercise dramatically decreased the expression of not only catabolic mediators but also cellular death markers with lower mineralization. At the advanced phase, prolonged melatonin treatment promoted mineralization through caspase-3-mediated chondrocyte apoptosis. However, co-intervention induced extracellular matrix remodeling through increases in IL-6, EPAS-1, and MMP-13. Reconstructed micro-CT images showed that collagenase injection induced subchondral bone erosion, formation of parameniscal osteophytes, and reduction of trabecular bone thickness regardless of the intervention, which was minimized by combined intervention. In conclusion, we suggest that melatonin with treadmill exercise may have both preventive and synergistic effects on rescue from cartilage degeneration and is more effective in the initial phase.


Asunto(s)
Cartílago/patología , Melatonina/uso terapéutico , Condicionamiento Físico Animal/fisiología , Animales , Cartílago/efectos de los fármacos , Colágeno Tipo II/metabolismo , Interleucina-6/metabolismo , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/fisiopatología , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/terapia , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 15(2): 2207-22, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24487506

RESUMEN

Endogenous neural stem/progenitor cells (eNSPCs) proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI). We have previously shown that melatonin (MT) plus exercise (Ex) had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups.These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.


Asunto(s)
Melatonina/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Condicionamiento Físico Animal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/rehabilitación , Animales , Proliferación Celular , Terapia por Ejercicio , Inmunohistoquímica , Masculino , Melatonina/administración & dosificación , Actividad Motora/efectos de los fármacos , Ratas , Traumatismos de la Médula Espinal/terapia
17.
Ann Rehabil Med ; 48(3): 192-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38950971

RESUMEN

We conducted a systematic review and meta-analysis to examine the protective effects of botulinum toxin-A (Botox-A) on spasticity and nociceptive pain in individuals with spinal cord injuries (SCIs). PubMed, Embase, and Cochrane Library databases were searched from inception to July 2023. The primary outcome of interest was spasticity and nociceptive pain. We pooled the available data using the generic inverse variance method, and we used a fixed-effect/random-effects model. We then calculated standardized mean difference (SMD) and 95% confidence intervals (95% CIs) to estimate the effect size. A total of fourteen studies meeting the inclusion criteria comprised two randomized controlled trials, five pre-post studies, and seven case reports. Across the various study designs, the majority of trials were assessed to have fair to high quality. The meta-analysis shows that Botox-A significantly decreased spasticity (SMD, -1.73; 95% CI, -2.51 to -0.95; p<0.0001, I2=48%) and nociceptive pain (SMD, -1.79; 95% CI, -2.67 to -0.91; p<0.0001, I2=0%) in SCI patients. Furthermore, Botox-A intervention improved motor function, activities of daily living (ADL), and quality of life. Our study suggests that Botox-A may alleviate spasticity and nociceptive pain in SCI patients. Moreover, the observed improvements in motor function, ADL, and overall quality of life following Botox-A intervention underscore its pivotal role in enhancing patient outcomes.

18.
Lab Anim Res ; 39(1): 11, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264475

RESUMEN

Preclinical ischemic stroke studies extensively utilize the intraluminal suture method of middle cerebral artery occlusion (MCAo). General anesthesia administration is an essential step for MCAo, but anesthetic agents can lead to adverse effects causing death and making a considerable impact on inducing cerebral ischemia. The purpose of this study was to comparatively assess the effect of isoflurane and xylazine on transient cerebral ischemia in a mouse model of MCAo. Twenty animals were randomly divided into four groups: sham group (no MCAo), control group (MCAo under isoflurane, no agent till reperfusion), isoflurane group (MCAo under isoflurane continued till reperfusion), xylazine group (MCAo under isoflurane, and administration of xylazine till reperfusion). The survival rate, brain infarct volume, and neurologic deficits were studied to assess the effect of isoflurane and xylazine on the stroke model. Our results showed that the body weight showed statistically significant change before and 24 h after surgery in the control and Isoflurane groups, but no difference in the Xylazine group. Also, the survival rate, brain infarct volume, and neurologic deficits were slightly reduced in the isoflurane group at 24 h after reperfusion injury. However, the xylazine and control groups showed similar BIV and neurologic deficits. Interestingly, a high survival rate was observed in the xylazine group. Our results indicate that the modified method of inhalation anesthetics combined with xylazine can reduce the risk of mortality and develop a reproducible MCAo model with predictable brain ischemia. In addition, extended isoflurane anesthesia after MCAo is associated with the risk of mortality.

19.
J Lifestyle Med ; 13(2): 83-89, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37970326

RESUMEN

Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder that affects millions of individuals globally. The identification of the lifestyle factors that potentially help prevent or postpone disease onset is of interest to the researchers. Although the study results are inconsistent, one such factor that has been extensively studied is coffee consumption. Therefore, this meta-analysis primarily aimed to investigate the effects of coffee consumption on the risk of AD. Pubmed, Embase, and Web of Science (Only Writing Web of Science is Fine) databases were searched for relevant studies with the keywords in various combinations, including "coffee", "caffeine", and "Alzheimer's disease". This meta-analysis included 11 studies. The relative risk (RR) with 95% confidence intervals (CI) was calculated to estimate the effect size. The study used the restricted maximum-likelihood method for a generic-inverse-variance analysis with random-effect (when heterogeneity, I2 > 50%) or fixed-effect (when heterogeneity, I2 < 50%) modeling. The study protocol has been registered at International Prospective Register of Systematic Reviews (CRD42023429016). Individuals that regularly consumed 1-2 cups and 2-4 cups coffee/day demonstrated a significantly lower risk of developing AD (1-2 cups/day: RR = 0.68, 95% CI = 0.54 to 0.83, I2 = 50.99%, p = 0.00 [the software used for analysis, shows the results of p value like this (0.00), I prefer not to change this as this is also fine]; 2-4 cups/day: RR = 0.79, 95% CI = 0.56 to 1.02, I2 = 71.79%, p = 0.00). However, individuals who consumed > 4 cups/day demonstrated an increased risk of developing AD (RR = 1.04, 95% CI = 0.91 to 1.17, I2 = 0.00%, p = 0.00). This meta-analysis indicates that limited (1-4 cups/day) daily coffee consumption reduces the risk of AD, whereas excessive consumption (> 4 cups/day) might increase the risk.

20.
Brain Res ; 1820: 148588, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742938

RESUMEN

The role of death-associated protein kinase1 (DAPK1) in post-stroke functional recovery is controversial, as is its mechanism of action and any neural remodeling effect after ischemia. To assess the debatable role of DAPK1, we established the middle cerebral artery occlusion (MCAo) model in DAPK1 knockout mice and Sprague-Dawley (SD) rats. We identified that the genetic deletion of the DAPK1 as well as pharmacological inhibition of DAPK1 showed reduced brain infarct volume and neurological deficit. We report that DAPK1 inhibition (DI) reduces post-stroke neuronal death by inhibiting BAX/BCL2 and LC3/Beclin1 mediated apoptosis and autophagy, respectively. Histological analysis displayed a reduction in nuclear condensation, neuronal dissociation, and degraded cytoplasm in the DI group. The DI treatment showed enhanced dendrite spine density and neurite outgrowth, upregulated neural proliferation marker proteins like brain-derived neurotrophic factor, and reduced structural abnormalities of the cortical pyramidal neurons. This research shows that DAPK1 drives cell death, its activation exacerbates functional recovery after cerebral ischemia and shows that oxazolone-based DI could be an excellent candidate for stroke and ischemic injury intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA