Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564437

RESUMEN

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Asunto(s)
Chaperonas Moleculares/genética , Mutación , Osteogénesis Imperfecta/genética , Animales , Femenino , Genes Recesivos , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Linaje , Fenotipo , Vía de Señalización Wnt
2.
Am J Med Genet A ; 188(5): 1545-1549, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35019224

RESUMEN

Osteogenesis imperfecta (OI) is a rare low-bone mass skeletal Mendelian disorder characterized by bone fragility leading to bone fractures, with deformities and stunted growth in the more severe phenotypes. Other common, nonskeletal findings include blue sclerae and dentinogenesis imperfecta. It is caused mainly by quantitative or structural defects in type I collagen, although dysregulation of different signaling pathways that play a role in bone morphogenesis has been described to be associated with a small fraction of individuals with OI. Recently, a homozygous variant in the translation start site of CCDC134, showing increased activation of the RAS/MAPK signaling pathway, has been reported in three families of Moroccan origin with a severe, deforming form of OI. We report on a 9-year-old Brazilian boy, harboring the same homozygous variant in CCDC134, also presenting severe bone involvement. This report contributes to the phenotypic delineation of this novel autosomal recessive form of OI, which presents with high prevalence of nonunion fractures considered rare events in OI in general. In addition, it expands the phenotype to include base skull anomalies, potentially leading to serious complications, as seen in severe forms of OI. A poor response to bisphosphonate therapy was observed in these individuals. As the variant in CCDC134 leads to dysregulation of the RAS/MAPK signaling pathway, drugs targeted to this pathway could be an alternative to achieve a better management of these individuals.


Asunto(s)
Fracturas Óseas , Osteogénesis Imperfecta , Huesos , Colágeno Tipo I/genética , Fracturas Óseas/complicaciones , Homocigoto , Humanos , Proteínas de la Membrana/genética , Osteogénesis Imperfecta/complicaciones , Fenotipo
3.
Hum Mutat ; 42(1): 50-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131168

RESUMEN

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Algoritmos , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Reproducibilidad de los Resultados , Secuenciación del Exoma
4.
Am J Med Genet C Semin Med Genet ; 184(4): 896-911, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33128510

RESUMEN

We report the clinical and molecular data of a large cohort comprising 242 individuals with RASopathies, from a single Tertiary Center in Brazil, the largest study from Latin America. Noonan syndrome represented 76% of the subjects, with heterozygous variants in nine different genes, mainly PTPN11, SOS1, RAF1, LZTR1, and RIT1, detected by Sanger and next-generation sequencing. The latter was applied to 126 individuals, with a positive yield of 63% in genes of the RAS/MAPK cascade. We present evidence that there are some allelic differences in PTPN11 across distinct populations. We highlight the clinical aspects that pose more medical concerns, such as the cardiac anomalies, bleeding diathesis and proliferative lesions. The genotype-phenotype analysis between the RASopathies showed statistically significant differences in some cardinal features, such as craniofacial and cardiac anomalies, the latter also statistically significant for different genes in Noonan syndrome. We present two individuals with a Noonan syndrome phenotype, one with an atypical, structural cardiac defect, harboring variants in genes mainly associated with isolated hypertrophic cardiomyopathy and discuss the role of these variants in their phenotype.


Asunto(s)
Síndrome de Noonan , Brasil , Genotipo , Humanos , Mutación , Síndrome de Noonan/genética , Fenotipo
5.
Cytogenet Genome Res ; 157(3): 153-157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933946

RESUMEN

Mosaic trisomy 12 is a rare anomaly, and only 9 cases of live births with this condition have been reported in the literature. The clinical phenotype is variable, including neuropsychomotor developmental delay, congenital heart disease, microcephaly, cutaneous spots, facial asymmetry, prominent ears, hypotonia, retinopathy, and sensorineural hearing loss. A 2-year-old female presented with neuropsychomotor developmental delay, prominent forehead, dolichocephaly, patchy skin pigmentation, and unexpected overgrowth at birth. Cytogenetic analysis of her peripheral blood showed normal results, suggesting the presence of a chromosomal alteration in other tissues. Further studies using G-banding and FISH performed on fibroblasts from both hyper- and hypopigmented regions identified a 47,XX,+12/46,XX karyotype. To the best of our knowledge, no patients with mosaic trisomy 12 associated with overgrowth have been reported to date. Congenital overgrowth and neonatal overgrowth have been frequently linked to Pallister-Killian syndrome (PKS; OMIM 601803). This case suggests the possibility of an association of genes present in the 12p region with fetal overgrowth, considering that chromosomal duplications could lead to an increase in the production of aberrant transcripts and disturbing gene dosage effects. This case highlights the importance of cytogenetic analysis in different tissues to provide relevant information to the specific genotype/phenotype correlation.


Asunto(s)
Cromosomas Humanos Par 12/genética , Fibroblastos/citología , Trisomía/diagnóstico , Línea Celular , Preescolar , Bandeo Cromosómico , Trastornos de los Cromosomas , Femenino , Fibroblastos/química , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Mosaicismo
6.
J Hum Genet ; 64(10): 967-978, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31337854

RESUMEN

Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder with specific dysmorphic features. Pathogenic genetic variants encoding cohesion complex subunits and interacting proteins (e.g., NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major causes of CdLS. However, there are many clinically diagnosed cases of CdLS without pathogenic variants in these genes. To identify further genetic causes of CdLS, we performed whole-exome sequencing in 57 CdLS families, systematically evaluating both single nucleotides variants (SNVs) and copy number variations (CNVs). We identified pathogenic genetic changes in 36 out of 57 (63.2 %) families, including 32 SNVs and four CNVs. Two known CdLS genes, NIPBL and SMC1A, were mutated in 23 and two cases, respectively. Among the remaining 32 individuals, four genes (ANKRD11, EP300, KMT2A, and SETD5) each harbored a pathogenic variant in a single individual. These variants are known to be involved in CdLS-like. Furthermore, pathogenic CNVs were detected in NIPBL, MED13L, and EHMT1, along with pathogenic SNVs in ZMYND11, MED13L, and PHIP. These three latter genes were involved in diseases other than CdLS and CdLS-like. Systematic clinical evaluation of all patients using a recently proposed clinical scoring system showed that ZMYND11, MED13L, and PHIP abnormality may cause CdLS or CdLS-like.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Síndrome de Cornelia de Lange/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo Mediador/genética , Proteínas Cromosómicas no Histona/genética , Variaciones en el Número de Copia de ADN , Síndrome de Cornelia de Lange/patología , Proteína p300 Asociada a E1A/genética , Familia , Femenino , Estudios de Asociación Genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Metiltransferasas/genética , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Secuenciación del Exoma
7.
Genet Mol Biol ; 41(1): 85-91, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29473937

RESUMEN

CHIME syndrome is an extremely rare autosomal recessive multisystemic disorder caused by mutations in PIGL. PIGL is an endoplasmic reticulum localized enzyme that catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis, which plays a role in the anchorage of cell-surface proteins including receptors, enzymes, and adhesion molecules. Germline mutations in other members of GPI and Post GPI Attachment to Proteins (PGAP) family genes have been described and constitute a group of diseases within the congenital disorders of glycosylation. Patients in this group often present alkaline phosphatase serum levels abnormalities and neurological symptoms. We report a CHIME syndrome patient who harbors a missense mutation c.500T > C (p.Leu167Pro) and a large deletion involving the 5' untranslated region and part of exon 1 of PIGL. In CHIME syndrome, a recurrent missense mutation c.500T > C (p.Leu167Pro) is found in the majority of patients, associated with a null mutation in the other allele, including an overrepresentation of large deletions. The latter are not detected by the standard analysis in sequencing techniques, including next-generation sequencing. Thus, in individuals with a clinical diagnosis of CHIME syndrome in which only one mutation is found, an active search for a large deletion should be sought.

8.
Cytogenet Genome Res ; 149(4): 241-246, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27665090

RESUMEN

The most prevalent structural variations in the human genome are copy number variations (CNVs), which appear predominantly in the subtelomeric regions. Variable sizes of 4p/4q CNVs have been associated with several different psychiatric findings and developmental disability (DD). We analyzed 105 patients with congenital anomalies (CA) and developmental and/or intellectual disabilities (DD/ID) using MLPA subtelomeric specific kits (P036 /P070) and 4 of them using microarrays. We found abnormal subtelomeric CNVs in 15 patients (14.3%), including 8 patients with subtelomeric deletions at 4p/4q (53.3%). Additional genomic changes were observed at 1p36, 2q37.3, 5p15.3, 5q35.3, 8p23.3, 13q11, 14q32.3, 15q11.2, and Xq28/Yq12. This indicates the prevalence of independent deletions at 4p/4q, involving PIGG, TRIML2, and FRG1. Furthermore, we identified 15 genes with changes in copy number that contribute to neurological development and/or function, among them CRMP1, SORCS2, SLC25A4, and HELT. Our results highlight the association of genes with changes in copy number at 4p and 4q subtelomeric regions and the DD phenotype. Cytogenomic characterization of additional cases with distal deletions should help clarifying the role of subtelomeric CNVs in neurological diseases.


Asunto(s)
Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Deleción Cromosómica , Cromosomas Humanos Par 4/genética , Femenino , Eliminación de Gen , Humanos , Masculino , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Telómero/genética
9.
Eur J Med Genet ; 71: 104966, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147273

RESUMEN

OBJECTIVE: to report the first case series of Brazilian children diagnosed with Kleefstra syndrome, present a possible phenotype expansion to the syndrome and to raise physicians' awareness for this rare disease. RESULTS: seven patients with confirmed KS were evaluated, including 5 males and 2 females. Abnormal prenatal findings were observed in 4 patients. Most patients were born at term, with normal birth measurements. All patients had neurodevelopmental delay and 6 evolved with intellectual disability. Hearing loss was present in 57.1% of patients and 28.7% had congenital heart disease. In males, cryptorchidism was present in 75%. Despite the facial dysmorphisms, only 2 out of 7 patients had a pre-test clinical suspicion of KS. One specific patient presented bilateral agenesis of the semicircular canals, a very rare ear manifestation in Kleefstra syndrome, representing a possible phenotype expansion of the syndrome. CONCLUSION: this report aims to promote awareness among physicians evaluating patients in a context of neurodevelopmental delay or congenital malformations, especially congenital heart defects. We also highlight a possible phenotype expansion of the syndrome, with a case of semicircular anomaly, not reported in this syndrome so far.


Asunto(s)
Deleción Cromosómica , Anomalías Craneofaciales , Discapacidad Intelectual , Fenotipo , Canales Semicirculares , Humanos , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Brasil , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/genética , Niño , Preescolar , Canales Semicirculares/anomalías , Canales Semicirculares/patología , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/genética , Cromosomas Humanos Par 9/genética , Lactante
10.
J Urol ; 188(1): 253-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22595063

RESUMEN

PURPOSE: Williams-Beuren syndrome is a genomic disorder caused by a hemizygous contiguous gene deletion on chromosome 7q11.23. Lower urinary tract symptoms are common in children with Williams-Beuren syndrome. However, there are few data on the management of voiding symptoms in this population. We report our experience using oxybutynin to treat urinary symptoms in children with Williams-Beuren syndrome. MATERIALS AND METHODS: We prospectively analyzed 42 patients with Williams-Beuren syndrome and significant lower urinary tract symptoms due to detrusor overactivity diagnosed on urodynamics in a 12-week, open-label study. Urological assessment included symptomatic evaluation, the impact of lower urinary tract symptoms on quality of life, frequency-volume chart, urodynamics and urinary tract sonography. After 12 weeks of treatment with 0.6 mg/kg oxybutynin per day given in 3 daily doses, patients were assessed for treatment efficacy and side effects. RESULTS: A total of 17 girls and 19 boys completed medical therapy and were assessed at 12 weeks. Mean ± SD patient age was 9.2 ± 4.3 years (range 3 to 18). The most common urinary complaint was urgency, which occurred in 31 patients (86.1%), followed by urge incontinence, which was seen in 29 (80.5%). Compared to baseline, urinary symptoms were substantially improved. The negative impact of storage symptoms on quality of life was significantly decreased from a mean ± SD of 3.3 ± 1.7 to 0.5 ± 0.9 (p <0.001). Mean ± SD maximum urinary flow improved from 14.2 ± 15.0 to 20.5 ± 6.4 ml per second (p <0.001). CONCLUSIONS: A total of 12 weeks of therapy with 0.6 mg/kg oxybutynin daily resulted in improvement of lower urinary tract symptoms, quality of life and maximum flow rate in most patients with Williams-Beuren syndrome.


Asunto(s)
Ácidos Mandélicos/administración & dosificación , Antagonistas Muscarínicos/administración & dosificación , Trastornos Urinarios/tratamiento farmacológico , Urodinámica/efectos de los fármacos , Síndrome de Williams/complicaciones , Adolescente , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Prospectivos , Calidad de Vida , Resultado del Tratamiento , Trastornos Urinarios/etiología , Trastornos Urinarios/fisiopatología , Síndrome de Williams/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA