Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Exp Cell Res ; 433(2): 113820, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37879549

RESUMEN

The Warburg effect links growth and glycolysis in cancer. A key purpose of the Warburg effect is to generate glycolytic intermediates for anabolic reactions, such as nucleotides → RNA/DNA and amino acids → protein synthesis. The aim of this study was to investigate whether a similar 'glycolysis-for-anabolism' metabolic reprogramming also occurs in hypertrophying skeletal muscle. To interrogate this, we first induced C2C12 myotube hypertrophy with IGF-1. We then added 14C glucose to the differentiation medium and measured radioactivity in isolated protein and RNA to establish whether 14C had entered anabolism. We found that especially protein became radioactive, suggesting a glucose → glycolytic intermediates → non-essential amino acid(s) → protein series of reactions, the rate of which was increased by IGF-1. Next, to investigate the importance of glycolytic flux and non-essential amino acid synthesis for myotube hypertrophy, we exposed C2C12 and primary mouse myotubes to the glycolysis inhibitor 2-Deoxy-d-glucose (2DG). We found that inhibiting glycolysis lowered C2C12 and primary myotube size. Similarly, siRNA silencing of PHGDH, the key enzyme of the serine biosynthesis pathway, decreased C2C12 and primary myotube size; whereas retroviral PHGDH overexpression increased C2C12 myotube size. Together these results suggest that glycolysis is important for hypertrophying myotubes, which reprogram their metabolism to facilitate anabolism, similar to cancer cells.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Neoplasias , Animales , Ratones , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/farmacología , Fibras Musculares Esqueléticas/metabolismo , Neoplasias/metabolismo , ARN/metabolismo , Hipertrofia/metabolismo , Glucosa/farmacología , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacología
2.
FASEB J ; 31(1): 238-255, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27733450

RESUMEN

Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.-Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kielbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Músculo Esquelético/fisiología , Mioblastos/fisiología , Regeneración/fisiología , Receptores de Activinas Tipo I/genética , Animales , Secuencia de Bases , Línea Celular , Daño del ADN , Regulación hacia Abajo , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos mdx , Desarrollo de Músculos/fisiología , Oligonucleótidos Antisentido/farmacología , ARN/genética , ARN/metabolismo , Regeneración/genética , Transducción de Señal
3.
Adv Exp Med Biol ; 1088: 153-206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30390252

RESUMEN

Myostatin was identified more than 20 years ago as a negative regulator of muscle mass in mice and cattle. Since then, a wealth of studies have uncovered the potential involvement of myostatin in muscle atrophy and sparked interest in myostatin as a promising therapeutic target to counteract decline of muscle mass in patients afflicted with different muscle-wasting conditions. Insight in the molecular mechanism of myostatin signaling and regulation of myostatin activity has resulted in the identification of specific treatments to inhibit myostatin signaling and related signaling pathways. Currently, several treatments that target myostatin and related proteins have been evaluated in preclinical animal models of muscle wasting, and some potential therapies have progressed to clinical trials. However, studies also revealed potential downsides of myostatin targeting in skeletal muscle and other tissues, which raises the question if myostatin is indeed a valuable target to counteract muscle atrophy. In this review we provide an updated overview of the molecular mechanisms of myostatin signaling, the preclinical evidence supporting a role for myostatin and related proteins in muscle atrophy, and the potential issues that arise when targeting myostatin. In addition, we evaluate the current clinical status of different treatments aimed at inhibiting myostatin and discuss future perspectives of targeting myostatin to counteract muscle atrophy.


Asunto(s)
Terapia Molecular Dirigida , Músculo Esquelético/patología , Atrofia Muscular/tratamiento farmacológico , Miostatina/antagonistas & inhibidores , Transducción de Señal , Animales , Bovinos , Humanos , Ratones , Atrofia Muscular/fisiopatología
4.
Adv Exp Med Biol ; 1088: 109-137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30390250

RESUMEN

Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stimulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less clear. This review provides an overview of the mechanisms via which IGF-1 signaling is implicated in several conditions of muscle atrophy and via which mechanisms protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates protein degradation, predominantly by its inhibiting effect on proteasomal and lysosomal protein degradation. Caspase-dependent protein degradation is also attenuated by IGF/PI3K/Akt signaling, whereas evidence for an effect on calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling reduces during denervation-, unloading-, and joint immobilization-induced muscle atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging-associated muscle atrophy. During denervation and aging, IGF-1 overexpression or injection counteracts denervation- and aging-associated muscle atrophy, despite enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenuates immobilization- or unloading-induced muscle atrophy. Exploration of the possibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs targeting IGF-1 signaling components are promising targets to counterbalance muscle atrophy. Overall, the findings summarized in this review show that in disuse conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Atrofia Muscular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Humanos , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología
5.
J Am Soc Nephrol ; 27(12): 3589-3599, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27020852

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), characterized by the formation of numerous kidney cysts, is caused by PKD1 or PKD2 mutations and affects 0.1% of the population. Although recent clinical studies indicate that reduction of cAMP levels slows progression of PKD, this finding has not led to an established safe and effective therapy for patients, indicating the need to find new therapeutic targets. The role of TGF-ß in PKD is not clearly understood, but nuclear accumulation of phosphorylated SMAD2/3 in cyst-lining cells suggests the involvement of TGF-ß signaling in this disease. In this study, we ablated the TGF-ß type 1 receptor (also termed activin receptor-like kinase 5) in renal epithelial cells of PKD mice, which had little to no effect on the expression of SMAD2/3 target genes or the progression of PKD. Therefore, we investigated whether alternative TGF-ß superfamily ligands account for SMAD2/3 activation in cystic epithelial cells. Activins are members of the TGF-ß superfamily and drive SMAD2/3 phosphorylation via activin receptors, but activins have not been studied in the context of PKD. Mice with PKD had increased expression of activin ligands, even at early stages of disease. In addition, treatment with a soluble activin receptor IIB fusion (sActRIIB-Fc) protein, which acts as a soluble trap to sequester activin ligands, effectively inhibited cyst formation in three distinct mouse models of PKD. These data point to activin signaling as a key pathway in PKD and a promising target for therapy.


Asunto(s)
Activinas/antagonistas & inhibidores , Enfermedades Renales Poliquísticas/prevención & control , Transducción de Señal , Animales , Progresión de la Enfermedad , Células Epiteliales , Femenino , Riñón/citología , Masculino , Ratones , Enfermedades Renales Poliquísticas/etiología , Proteínas Recombinantes de Fusión/farmacología , Proteína Smad2/fisiología , Proteína smad3/fisiología , Factores de Tiempo
6.
Cell Mol Life Sci ; 70(3): 407-23, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22752156

RESUMEN

Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Osificación Heterotópica/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Humanos , Distrofia Muscular de Duchenne/patología , Osificación Heterotópica/patología , Transducción de Señal
7.
Am J Physiol Endocrinol Metab ; 304(1): E41-50, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23115080

RESUMEN

Loss of muscle mass and function occurs in various diseases. Myostatin blocking can attenuate muscle loss, but downstream signaling is not well known. Therefore, to elucidate associated signaling pathways, we used the soluble activin receptor IIb (sActRIIB-Fc) to block myostatin and activins in mice. Within 2 wk, the treatment rapidly increased muscle size as expected but decreased capillary density per area. sActRIIB-Fc increased muscle protein synthesis 1-2 days after the treatment correlating with enhanced mTORC1 signaling (phosphorylated rpS6 and S6K1, r = 0.8). Concurrently, increased REDD1 and eIF2Bε protein contents and phosphorylation of 4E-BP1 and AMPK was observed. In contrast, proangiogenic MAPK signaling and VEGF-A protein decreased. Hippo signaling has been characterized recently as a regulator of organ size and an important regulator of myogenesis in vitro. The phosphorylation of YAP (Yes-associated protein), a readout of activated Hippo signaling, increased after short- and longer-term myostatin and activin blocking and in exercised muscle. Moreover, dystrophic mdx mice had elevated phosphorylated and especially total YAP protein content. These results show that the blocking of myostatin and activins induce rapid skeletal muscle growth. This is associated with increased protein synthesis and mTORC1 signaling but decreased capillary density and proangiogenic signaling. It is also shown for the first time that Hippo signaling is activated in skeletal muscle after myostatin blocking and exercise and also in dystrophic muscle. This suggests that Hippo signaling may have a role in skeletal muscle in various circumstances.


Asunto(s)
Capilares/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Complejos Multiproteicos/fisiología , Proteínas Musculares/biosíntesis , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/fisiología , Serina-Treonina Quinasas TOR/fisiología , Activinas/antagonistas & inhibidores , Animales , Capilares/citología , Recuento de Células , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Vía de Señalización Hippo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miostatina/antagonistas & inhibidores , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Am J Physiol Endocrinol Metab ; 305(2): E171-82, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23695214

RESUMEN

The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.


Asunto(s)
Receptores de Activinas Tipo II/farmacología , Activinas/antagonistas & inhibidores , Autofagia/fisiología , Actividad Motora/fisiología , Miostatina/antagonistas & inhibidores , Condicionamiento Físico Animal/fisiología , Receptores de Activinas Tipo II/biosíntesis , Activinas/fisiología , Adiposidad/genética , Adiposidad/fisiología , Animales , Western Blotting , Peso Corporal/fisiología , Citrato (si)-Sintasa/metabolismo , Creatina Quinasa/sangre , ADN/biosíntesis , ADN/aislamiento & purificación , Ingestión de Alimentos/fisiología , Hematócrito , Hemoglobinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Miostatina/fisiología , Oxidación-Reducción , Factor de Necrosis Tumoral alfa/metabolismo
9.
FASEB J ; 26(4): 1462-72, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22202673

RESUMEN

The transforming growth factor (TGF)-ß family member myostatin is an important regulator of myoblast, adipocyte, and fibroblast growth and differentiation, but the signaling mechanisms remain to be established. We therefore determined the contribution of myostatin type I receptors activin receptor-like kinase-4 (ALK4) and -5 (ALK5) and different coreceptors in C2C12 myoblasts, C3H10T1/2 mesenchymal stem cells, and 3T3-L1 fibroblasts, as well as in primary myoblast and fibroblasts. We performed siRNA-mediated knockdown of each receptor and measured signaling activity using Smad3-dependent luciferase and Smad2 phosphorylation assays with nontargeting siRNA as control. We find that myostatin utilizes ALK4 in myoblasts, whereas it has a preference for ALK5 in nonmyogenic cells. Notably, our results show that coreceptor Cripto is expressed in myoblasts but not in the nonmyogenic cells and that it regulates myostatin activity. More specifically, myostatin requires Cripto in myoblasts, whereas Cripto represses activin activity and TGF-ß signaling is Cripto independent. Cripto-mediated myostatin signaling is dependent on both epidermal growth factor (EGF)-like and Cripto-FRL1-cryptic (CFC) domains, whereas activin signaling is solely conferred by the CFC domain. Furthermore, Cripto down-regulation enhances myoblast differentiation, showing its importance in myostatin signaling. Together, our results identify a molecular mechanism that explains the cell-type specific aspects of signaling by myostatin and other TGF-ß family members.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Fibroblastos/fisiología , Células Madre Mesenquimatosas/fisiología , Mioblastos/fisiología , Miostatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Receptores de Activinas/metabolismo , Receptores de Activinas Tipo I/genética , Activinas/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Fibroblastos/citología , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Mioblastos/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/metabolismo
10.
Cell Mol Life Sci ; 69(8): 1377-89, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22130515

RESUMEN

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


Asunto(s)
Cojinetes Endocárdicos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Cojinetes Endocárdicos/metabolismo , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocardio/metabolismo , Ratas , Proteínas de Dominio T Box/genética , Regulación hacia Arriba
11.
Elife ; 112022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323108

RESUMEN

In skeletal muscle, transforming growth factor-ß (TGF-ß) family growth factors, TGF-ß1 and myostatin, are involved in atrophy and muscle wasting disorders. Simultaneous interference with their signalling pathways may improve muscle function; however, little is known about their individual and combined receptor signalling. Here, we show that inhibition of TGF-ß signalling by simultaneous muscle-specific knockout of TGF-ß type I receptors Tgfbr1 and Acvr1b in mice, induces substantial hypertrophy, while such effect does not occur by single receptor knockout. Hypertrophy is induced by increased phosphorylation of Akt and p70S6K and reduced E3 ligases expression, while myonuclear number remains unaltered. Combined knockout of both TGF-ß type I receptors increases the number of satellite cells, macrophages and improves regeneration post cardiotoxin-induced injury by stimulating myogenic differentiation. Extra cellular matrix gene expression is exclusively elevated in muscle with combined receptor knockout. Tgfbr1 and Acvr1b are synergistically involved in regulation of myofibre size, regeneration, and collagen deposition.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , Animales , Hipertrofia , Ratones , Músculo Esquelético/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
Aging (Albany NY) ; 14(1): 28-53, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023852

RESUMEN

Aging-associated muscle wasting and impaired regeneration are caused by deficiencies in muscle stem cell (MuSC) number and function. We postulated that aged MuSCs are intrinsically impaired in their responsiveness to omnipresent mechanical cues through alterations in MuSC morphology, mechanical properties, and number of integrins, culminating in impaired proliferative capacity. Here we show that aged MuSCs exhibited significantly lower growth rate and reduced integrin-α7 expression as well as lower number of phospho-paxillin clusters than young MuSCs. Moreover, aged MuSCs were less firmly attached to matrigel-coated glass substrates compared to young MuSCs, as 43% of the cells detached in response to pulsating fluid shear stress (1 Pa). YAP nuclear localization was 59% higher than in young MuSCs, yet YAP target genes Cyr61 and Ctgf were substantially downregulated. When subjected to pulsating fluid shear stress, aged MuSCs exhibited reduced upregulation of proliferation-related genes. Together these results indicate that aged MuSCs exhibit impaired mechanosensitivity and growth potential, accompanied by altered morphology and mechanical properties as well as reduced integrin-α7 expression. Aging-associated impaired muscle regenerative capacity and muscle wasting is likely due to aging-induced intrinsic MuSC alterations and dysfunctional mechanosensitivity.


Asunto(s)
Proliferación Celular/fisiología , Senescencia Celular/fisiología , Mecanotransducción Celular/fisiología , Fibras Musculares Esqueléticas/fisiología , Células Madre/fisiología , Envejecimiento , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Adhesión Celular/fisiología , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Ratones , Óxido Nítrico/metabolismo , Resistencia al Corte
13.
Neurobiol Dis ; 41(2): 353-60, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20940052

RESUMEN

Duchenne Muscular Dystrophy (DMD) is an X-linked lethal muscle wasting disease characterized by muscle fiber degeneration and necrosis. The progressive pathology of DMD can be explained by an insufficient regenerative response resulting in fibrosis and adipose tissue formation. BMPs are known to inhibit myogenic differentiation and in a previous study we found an increased expression of a BMP family member BMP4 in DMD myoblasts. The aim of the current study was therefore to investigate whether inhibition of BMP signaling could be beneficial for myoblast differentiation and muscle regeneration processes in a DMD context. All tested BMP inhibitors, Noggin, dorsomorphin and LDN-193189, were able to accelerate and enhance myogenic differentiation. However, dorsomorphin repressed both BMP and TGFß signaling and was found to be toxic to primary myoblast cell cultures. In contrast, Noggin was found to be a potent and selective BMP inhibitor and was therefore tested in vivo in a DMD mouse model. Local adenoviral-mediated overexpression of Noggin in muscle resulted in an increased expression of the myogenic regulatory genes Myog and Myod1 and improved muscle histology. In conclusion, our results suggest that repression of BMP signaling may constitute an attractive adjunctive therapy for DMD patients.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Mioblastos/patología , Fenotipo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/farmacología , Proteínas Portadoras/uso terapéutico , Diferenciación Celular/genética , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo
14.
Cells ; 9(2)2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041253

RESUMEN

Transforming Growth Factor ß (TGF-ß) is involved in fibrosis as well as the regulation of muscle mass, and contributes to the progressive pathology of muscle wasting disorders. However, little is known regarding the time-dependent signalling of TGF-ß in myoblasts and myotubes, as well as how TGF-ß affects collagen type I expression and the phenotypes of these cells. Here, we assessed effects of TGF-ß on gene expression in C2C12 myoblasts and myotubes after 1, 3, 9, 24 and 48 h treatment. In myoblasts, various myogenic genes were repressed after 9, 24 and 48 h, while in myotubes only a reduction in Myh3 expression was observed. In both myoblasts and myotubes, TGF-ß acutely induced the expression of a subset of genes involved in fibrosis, such as Ctgf and Fgf-2, which was subsequently followed by increased expression of Col1a1. Knockdown of Ctgf and Fgf-2 resulted in a lower Col1a1 expression level. Furthermore, the effects of TGF-ß on myogenic and fibrotic gene expression were more pronounced than those of myostatin, and knockdown of TGF-ß type I receptor Tgfbr1, but not receptor Acvr1b, resulted in a reduction in Ctgf and Col1a1 expression. These results indicate that, during muscle regeneration, TGF-ß induces fibrosis via Tgfbr1 by stimulating the autocrine signalling of Ctgf and Fgf-2.


Asunto(s)
Colágeno Tipo I/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/efectos de los fármacos , Miostatina/farmacología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factores de Tiempo
15.
Circ Res ; 100(3): 354-62, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17234970

RESUMEN

The sinoatrial node, which resides at the junction of the right atrium and the superior caval vein, contains specialized myocardial cells that initiate the heart beat. Despite this fundamental role in heart function, the embryonic origin and mechanisms of localized formation of the sinoatrial node have not been defined. Here we show that subsequent to the formation of the Nkx2-5-positive heart tube, cells bordering the inflow tract of the heart tube give rise to the Nkx2-5-negative myocardial cells of the sinoatrial node and the sinus horns. Using genetic models, we show that as the myocardium of the heart tube matures, Nkx2-5 suppresses pacemaker channel gene Hcn4 and T-box transcription factor gene Tbx3, thereby enforcing a progressive confinement of their expression to the forming Nkx2-5-negative sinoatrial node and sinus horns. Thus, Nkx2-5 is essential for establishing a gene expression border between the atrium and sinoatrial node. Tbx3 was found to suppress chamber differentiation, providing an additional mechanism by which the Tbx3-positive sinoatrial node is shielded from differentiating into atrial myocardium. Pitx2c-deficient fetuses form sinoatrial nodes with indistinguishable molecular signatures at both the right and left sinuatrial junction, indicating that Pitx2c functions within the left/right pathway to suppress a default program for sinuatrial node formation on the left. Our molecular pathway provides a mechanism for how pacemaker activity becomes progressively relegated to the most recently added components of the venous pole of the heart and, ultimately, to the junction of the right atrium and superior caval vein.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Proteínas de Homeodominio/fisiología , Canales Iónicos/biosíntesis , Nodo Sinoatrial/embriología , Proteínas de Dominio T Box/fisiología , Factores de Transcripción/fisiología , Animales , Factor Natriurético Atrial , Biomarcadores , Tipificación del Cuerpo/genética , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/genética , Conexinas/biosíntesis , Conexinas/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Imagenología Tridimensional , Hibridación in Situ , Canales Iónicos/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocardio/metabolismo , Cadenas Ligeras de Miosina/biosíntesis , Cadenas Ligeras de Miosina/genética , Péptido Natriurético Tipo-C/biosíntesis , Péptido Natriurético Tipo-C/genética , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusión/fisiología , Nodo Sinoatrial/citología , Proteínas de Dominio T Box/biosíntesis , Proteínas de Dominio T Box/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Troponina I/biosíntesis , Troponina I/genética , Proteína alfa-5 de Unión Comunicante , Proteína del Homeodomínio PITX2
16.
Cardiovasc Res ; 62(3): 489-99, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15158141

RESUMEN

OBJECTIVE: The molecular mechanisms that regulate the formation of the conduction system are poorly understood. We studied the developmental expression pattern and functional aspects of the T-box transcription factor Tbx3, a novel marker for the murine central conduction system (CCS). METHODS: The patterns of expression of Tbx3, and of Cx40, Cx43, and Nppa, which are markers for atrial and ventricular chamber-type myocardium in the developing heart, were analyzed in mice by in situ hybridization and three-dimensional reconstruction analysis. The function of Tbx3 in regulating Nppa and Cx40 promoter activity was studied in vitro. RESULTS: In the formed heart, Tbx3 is expressed in the sinoatrial node (SAN), atrioventricular node (AVN), bundle and proximal bundle branches (BBs), as well as the internodal regions and the atrioventricular region. Throughout cardiac development, Tbx3 is expressed in an uninterrupted myocardial domain that extends from the sinoatrial node to the atrioventricular region. This expression domain is present in the looping heart tube from E8.5 onwards. Expression of the chamber-type myocardial markers is specifically absent from the Tbx3 expression domain. Tbx3 is able to repress Nppa and Cx40 promoter activity and abolish the synergistic activation of the Nppa promoter by Tbx5 and Nkx2.5. CONCLUSION: We identified the T-box transcription factor Tbx3 as a novel and accurate marker for the central conduction system. Our analysis implicates a role for Tbx3 in repressing a chamber-specific program of gene expression in regions from which the components of the central conduction system are subsequently formed.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema de Conducción Cardíaco/embriología , Proteínas de Dominio T Box/genética , Animales , Factor Natriurético Atrial , Células COS , Línea Celular , Conexinas/genética , Expresión Génica , Marcadores Genéticos , Edad Gestacional , Sistema de Conducción Cardíaco/química , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Ratones , Ratones Endogámicos , Miocardio/química , Péptido Natriurético Tipo-C , Regiones Promotoras Genéticas , Precursores de Proteínas , Proteínas de Dominio T Box/análisis , Proteína alfa-5 de Unión Comunicante
17.
Fundam Clin Pharmacol ; 18(1): 45-50, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14748753

RESUMEN

To investigate the involvement of the mitogen-activated protein kinase (MAPK) family of extracellular signal-regulated kinase (ERK) 1 and 2 (MAPKerk1/2) in the vasopressin-mediated vasoconstriction in the rat aorta. Vasopressin-induced vasoconstriction was measured in isolated rat thoracic aortae in the presence or absence of MAPKerk1/2 kinase (MKKmek1/2) inhibitors. Thereafter the MAPKerk1/2 phosphorylation in the rat aorta was quantified using Western blot analysis. Vasopressin (1-300 nm) induced a concentration-dependent vasoconstriction, which could be inhibited concentration dependently by the selective MKKmek1/2 inhibitors, PD 98059 (10 and 100 microm) and U 0126 (10 and 100 microm). Western blot analysis revealed a 2.7 +/- 0.6-fold increase in the MAPKerk1/2 phosphorylation induced by vasopressin (300 nm). This phosphorylation could be dose dependently prevented by both PD 98059 (100 microm) and U 0126 (10 and 100 microm). These results indicate that vasoconstriction induced by vasopressin is partly regulated by the MAPKerk1/2 pathway.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Vasoconstrictores/farmacología , Vasopresinas/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Western Blotting , Butadienos/farmacología , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Técnicas In Vitro , Masculino , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Nitrilos/farmacología , Fosforilación , Potasio/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
18.
Mol Ther Nucleic Acids ; 3: e156, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24691207

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-ß (TGF-ß) is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-ß signaling cascades by specifically inhibiting the expression of TGF-ß type I receptor TGFBR1 (ALK5). Antisense oligonucleotides (AONs) were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-ß activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-ß signaling cascades with potential beneficial effects for DMD.

19.
PLoS One ; 8(7): e69096, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861958

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is a rare heritable disease characterized by progressive heterotopic ossification of connective tissues, for which there is presently no definite treatment. A recurrent activating mutation (c.617G→A; R206H) of activin receptor-like kinase 2 (ACVR1/ALK2), a BMP type I receptor, has been shown as the main cause of FOP. This mutation constitutively activates the BMP signaling pathway and initiates the formation of heterotopic bone. In this study, we have designed antisense oligonucleotides (AONs) to knockdown mouse ALK2 expression by means of exon skipping. The ALK2 AON could induce exon skipping in cells, which was accompanied by decreased ALK2 mRNA levels and impaired BMP signaling. In addition, the ALK2 AON potentiated muscle differentiation and repressed BMP6-induced osteoblast differentiation. Our results therefore provide a potential therapeutic approach for the treatment of FOP disease by reducing the excessive ALK2 activity in FOP patients.


Asunto(s)
Receptores de Activinas Tipo I/antagonistas & inhibidores , Exones , Células Musculares/citología , Mioblastos/citología , Miositis Osificante/terapia , Oligonucleótidos Antisentido/genética , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Terapia Genética/métodos , Humanos , Ratones , Células Musculares/metabolismo , Mutación , Mioblastos/metabolismo , Miositis Osificante/genética , Miositis Osificante/metabolismo , Miositis Osificante/patología , Oligonucleótidos Antisentido/síntesis química , Osteoblastos/metabolismo , Osteoblastos/patología , Osteogénesis/genética , Transducción de Señal
20.
Curr Gene Ther ; 12(3): 245-59, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22554312

RESUMEN

Since the discovery of the myostatin/ActRIIB signaling pathway 15 years ago, numerous strategies were developed to block its inhibitory function during skeletal muscle growth. Accumulating evidence demonstrates that abrogation of myostatin/ActRIIB signaling ameliorates pathology and function of dystrophic muscle in animal models for Duchenne muscular dystrophy (DMD). Therapeutic trials in healthy man and muscular dystrophy patients suggest feasibility of blockade strategies for potential clinical use. However, many key questions on the effect of myostatin/ActRIIB blockade remain unresolved; such as the underlying molecular mechanism that triggers muscle growth, the effect on muscle regeneration and adult muscle stem cell regulation and whether it causes long term metabolic alterations. Current therapeutic strategies aim to systemically abrogate myostatin/ActRIIB signaling. Although this ensures widespread effect on musculature, it also interferes with ActRIIB signaling in other tissues than skeletal muscle, thereby risking adverse effects. This review discusses current knowledge on myostatin/ActRIIB signaling and its potential value as a therapeutic target for DMD.


Asunto(s)
Receptores de Activinas Tipo II , Terapia Molecular Dirigida , Distrofia Muscular de Duchenne , Miostatina/antagonistas & inhibidores , Receptores de Activinas Tipo II/antagonistas & inhibidores , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Ensayos Clínicos Fase II como Asunto , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Miostatina/genética , Miostatina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA