Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 211: 113030, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35257688

RESUMEN

BACKGROUND: We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. We hypothesize that in The Netherlands the same environmental factors and mobility trends that are associated with the seasonality of flu-like illnesses are predictors of COVID-19 seasonality as well. METHODS: We used meteorological, pollen/hay fever and mobility data from the Netherlands. For the reproduction number of COVID-19 (Rt), we used daily estimates from the Dutch State Institute for Public Health. For all datasets, we selected the overlapping period of COVID-19 and the first allergy season: from February 17, 2020 till September 21, 2020 (n = 218). Backward stepwise multiple linear regression was used to develop an environmental prediction model of the Rt of COVID-19. Next, we studied whether adding mobility trends to an environmental model improved the predictive power. RESULTS: Through stepwise backward multiple linear regression four highly significant (p < 0.01) predictive factors are selected in our combined model: temperature, solar radiation, hay fever incidence, and mobility to indoor recreation locations. Our combined model explains 87.5% of the variance of Rt of COVID-19 and has a good and highly significant fit: F(4, 213) = 374.2, p < 0.00001. This model had a better overall predictive performance than a solely environmental model, which explains 77.3% of the variance of Rt (F(4, 213) = 181.3, p < 0.00001). CONCLUSIONS: We conclude that the combined mobility and environmental model can adequately predict the seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In this model higher solar radiation, higher temperature and hay fever are related to lower COVID-19 reproduction, and higher mobility to indoor recreation locations is related to an increased COVID-19 spread.


Asunto(s)
COVID-19 , Rinitis Alérgica Estacional , COVID-19/epidemiología , Humanos , Países Bajos/epidemiología , Polen , Rinitis Alérgica Estacional/epidemiología , Estaciones del Año
2.
One Health ; 13: 100277, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34124333

RESUMEN

BACKGROUND: During the first wave of COVID-19 it was hypothesized that COVID-19 is subject to multi-wave seasonality, similar to Influenza-Like Illnesses since time immemorial. One year into the pandemic, we aimed to test the seasonality hypothesis for COVID-19. METHODS: We calculated the average annual time-series for Influenza-Like Illnesses based on incidence data from 2016 till 2019 in the Netherlands, and compared these with two COVID-19 time-series during 2020/2021 for the Netherlands. We plotted the time-series on a standardized logarithmic infection scale. Finally, we calculated correlation coefficients and used univariate regression analysis to estimate the strength of the association between the time-series of COVID-19 and Influenza-Like Illnesses. RESULTS: The time-series for COVID-19 and Influenza-Like Illnesses were strongly and highly significantly correlated. The COVID-19 peaks were all during flu season, and lows were all in the opposing period. Finally, COVID-19 meets the multi-wave characteristics of earlier flu-like pandemics, namely a short first wave at the tail-end of a flu season, and a longer and more intense second wave during the subsequent flu season. CONCLUSIONS: We conclude that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. Further, the COVID-19 pandemic satisfies the criteria of earlier respiratory pandemics, namely a first wave that is short-lived at the tail-end of flu season, and a second wave that is longer and more severe.This seems to imply that the same factors that are driving the seasonality of Influenza-Like Illnesses are causing COVID-19 seasonality as well, such as solar radiation (UV), temperature, relative humidity, and subsequently seasonal allergens and allergies.

3.
Sci Total Environ ; 755(Pt 2): 143182, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33131881

RESUMEN

Current models for flu-like epidemics insufficiently explain multi-cycle seasonality. Meteorological factors alone, including the associated behavior, do not predict seasonality, given substantial climate differences between countries that are subject to flu-like epidemics or COVID-19. Pollen is documented to be allergenic, it plays a role in immuno-activation and defense against respiratory viruses, and seems to create a bio-aerosol that lowers the reproduction number of flu-like viruses. Therefore, we hypothesize that pollen may explain the seasonality of flu-like epidemics, including COVID-19, in combination with meteorological variables. We have tested the Pollen-Flu Seasonality Theory for 2016-2020 flu-like seasons, including COVID-19, in the Netherlands, with its 17.4 million inhabitants. We combined changes in flu-like incidence per 100 K/Dutch residents (code: ILI) with pollen concentrations and meteorological data. Finally, a predictive model was tested using pollen and meteorological threshold values, inversely correlated to flu-like incidence. We found a highly significant inverse correlation of r(224) = -0.41 (p < 0.001) between pollen and changes in flu-like incidence, corrected for the incubation period. The correlation was stronger after taking into account the incubation time. We found that our predictive model has the highest inverse correlation with changes in flu-like incidence of r(222) = -0.48 (p < 0.001) when average thresholds of 610 total pollen grains/m3, 120 allergenic pollen grains/m3, and a solar radiation of 510 J/cm2 are passed. The passing of at least the pollen thresholds, preludes the beginning and end of flu-like seasons. Solar radiation is a co-inhibitor of flu-like incidence, while temperature makes no difference. However, higher relative humidity increases with flu-like incidence. We conclude that pollen is a predictor of the inverse seasonality of flu-like epidemics, including COVID-19, and that solar radiation is a co-inhibitor, in the Netherlands.


Asunto(s)
COVID-19 , Humanos , Países Bajos/epidemiología , Polen , SARS-CoV-2 , Estaciones del Año
4.
Sci Total Environ ; 727: 138543, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32498207

RESUMEN

There is uncertainty if current models for the Covid-19 pandemic should already take into account seasonality. That is because current environmental factors do not provide a powerful explanation of such seasonality, especially given climate differences between countries with moderate climates. It is hypothesized that one major factor is overlooked: pollen count. Pollen are documented to invoke strong immune responses and might create an environmental factor that makes it more difficult for flu-like viruses to survive outside a host. This Dutch study confirms that there is a (highly) significant inverse correlation between pollen count and weekly changes in medical flu consults, and that there is a highly significant inverse correlation between hay fever incidence, as measured by prescribed medication revenues, and weekly flu consults. This supports the idea that pollen are a direct or indirect factor in the seasonality of flu-like epidemics. If seasonality will be observed during the covid-19 spread as well, it is not unlikely that pollen play a role.


Asunto(s)
Rinitis Alérgica Estacional , Alérgenos , Humanos , Incidencia , Polen , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA