Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 21(2): 911-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25330243

RESUMEN

Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.


Asunto(s)
Clima , Modelos Biológicos , Triticum/crecimiento & desarrollo , Cambio Climático , Ambiente , Estaciones del Año
2.
Sci Data ; 5: 180246, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30398475

RESUMEN

Air temperature at 2 m above the land surface is a key variable used to assess climate change. However, observations of air temperature are typically only available from a limited number of weather stations distributed mainly in developed countries, which in turn may often report time series with missing values. As a consequence, the record of air temperature observations is patchy in both space and time. Satellites, on the other hand, measure land surface temperature continuously in both space and time. In order to combine the relative strengths of surface and satellite temperature records, we develop a dataset in which monthly air temperature is predicted from monthly land surface temperature for the years 2003 to 2016, using a statistical model that incorporates information on geographic and climatic similarity. We expect this dataset to be useful for various applications involving climate monitoring and land-climate interactions.

3.
Nat Commun ; 9(1): 679, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463795

RESUMEN

Changing vegetation cover alters the radiative and non-radiative properties of the surface. The result of competing biophysical processes on Earth's surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and background climate. Here we provide the first data-driven assessment of the potential effect on the full surface energy balance of multiple vegetation transitions at global scale. For this purpose we developed a novel methodology that is optimized to disentangle the effect of mixed vegetation cover on the surface climate. We show that perturbations in the surface energy balance generated by vegetation change from 2000 to 2015 have led to an average increase of 0.23 ± 0.03 °C in local surface temperature where those vegetation changes occurred. Vegetation transitions behind this warming effect mainly relate to agricultural expansion in the tropics, where surface brightening and consequent reduction of net radiation does not counter-balance the increase in temperature associated with reduction in transpiration. This assessment will help the evaluation of land-based climate change mitigation plans.

4.
Sci Data ; 5: 180014, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29461538

RESUMEN

Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

6.
Conf Proc IEEE Eng Med Biol Soc ; 2004: 2470-5, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-17270773

RESUMEN

The goal of this project is to develop a strength testing glove that will improve current methods of muscle strength measurement by enabling physical and occupational therapists to quantitatively assess patient progress. The project was realized through research, human testing, prototype construction, component testing, and analysis of data. This design will provide a cheaper, more flexible, more versatile, and more quantitative method of muscle strength measurement for medical professionals. This design could potentially change the current approach pediatric physical therapists take in testing and tracking patients muscle strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA