Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 233, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964282

RESUMEN

BACKGROUND: Pamamycins are a family of highly bioactive macrodiolide polyketides produced by Streptomyces alboniger as a complex mixture of derivatives with molecular weights ranging from 579 to 705 Daltons. The large derivatives are produced as a minor fraction, which has prevented their isolation and thus studies of chemical and biological properties. RESULTS: Herein, we describe the transcriptional engineering of the pamamycin biosynthetic gene cluster (pam BGC), which resulted in the shift in production profile toward high molecular weight derivatives. The pam BGC library was constructed by inserting randomized promoter sequences in front of key biosynthetic operons. The library was expressed in Streptomyces albus strain with improved resistance to pamamycins to overcome sensitivity-related host limitations. Clones with modified pamamycin profiles were selected and the properties of engineered pam BGC were studied in detail. The production level and composition of the mixture of pamamycins was found to depend on balance in expression of the corresponding biosynthetic genes. This approach enabled the isolation of known pamamycins and the discovery of three novel derivatives with molecular weights of 663 Da and higher. One of them, homopamamycin 677A, is the largest described representative of this family of natural products with an elucidated structure. The new pamamycin 663A shows extraordinary activity (IC50 2 nM) against hepatocyte cancer cells as well as strong activity (in the one-digit micromolar range) against a range of Gram-positive pathogenic bacteria. CONCLUSION: By employing transcriptional gene cluster refactoring, we not only enhanced the production of known pamamycins but also discovered novel derivatives exhibiting promising biological activities. This approach has the potential for broader application in various biosynthetic gene clusters, creating a sustainable supply and discovery platform for bioactive natural products.


Asunto(s)
Productos Biológicos , Policétidos , Macrólidos , Familia de Multigenes
2.
Sci Rep ; 8(1): 491, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323285

RESUMEN

The design and engineering of secondary metabolite gene clusters that are characterized by complicated genetic organization, require the development of collections of well-characterized genetic control elements that can be reused reliably. Although a few intrinsic terminators and RBSs are used routinely, their translation and termination efficiencies have not been systematically studied in Actinobacteria. Here, we analyzed the influence of the regions surrounding RBSs on gene expression in these bacteria. We demonstrated that inappropriate RBSs can reduce the expression efficiency of a gene to zero. We developed a genetic device - an in vivo RBS-selector - that allows selection of an optimal RBS for any gene of interest, enabling rational control of the protein expression level. In addition, a genetic tool that provides the opportunity for measurement of termination efficiency was developed. Using this tool, we found strong terminators that lead to a 17-100-fold reduction in downstream expression and are characterized by sufficient sequence diversity to reduce homologous recombination when used with other elements. For the first time, a C-terminal degradation tag was employed for the control of protein stability in Streptomyces. Finally, we describe a collection of regulatory elements that can be used to control metabolic pathways in Actinobacteria.


Asunto(s)
Actinobacteria/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica , Glucuronidasa/genética , Glucuronidasa/metabolismo , Regiones Promotoras Genéticas/genética , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Regiones Terminadoras Genéticas/genética
3.
FEMS Microbiol Lett ; 342(2): 138-46, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23480614

RESUMEN

We report here a transposon-based strategy to generate Streptomyces globisporus 1912 mutants with improved landomycin E production. The modified minitransposon with strong, outward-oriented promoters for the overexpression of downstream-situated genes has been applied for mutant library generation. Approximately 2500 mutants of S. globisporus 1912 were analyzed for landomycin E production, leading to the identification of several overproducers. Subcloning and sequencing of the sites of integration showed that some of the inactivated genes encode proteins with a similarity to known bacterial regulators such as TetR and LuxR families. One of the regulators (GntR type) has shown the strongest influence on the landomycin E production. Its ortholog (encoded by sco3269) in Streptomyces coelicolor was characterized in greater detail and showed similar effects on actinorhodin production and morphological differentiation.


Asunto(s)
Aminoglicósidos/biosíntesis , Vías Biosintéticas/genética , Elementos Transponibles de ADN , Genes Reguladores , Mutagénesis Insercional/métodos , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Genes Bacterianos , Ingeniería Metabólica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA