RESUMEN
Cell-penetrating peptides (CPPs) are crucial for delivering macromolecules such as nucleic acids into cells. This study investigates the effectiveness of dual-modified penetratin peptides, focusing on the impact of stapling structures and an endosomal escape domain (EED) on enhancing intracellular uptake. Some CPPs were synthesized with an EED at either the N- or C-terminus and stapling structures, and then complexed with plasmid DNA (pDNA) to evaluate their cellular uptake. Results revealed that the combination of stapling and an EED significantly improved delivery efficiency, primarily via macropinocytosis and clathrin-mediated endocytosis. These findings underscore the importance of optimizing CPP sequences for effective nucleic acid delivery systems.
Asunto(s)
Péptidos de Penetración Celular , Endosomas , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/farmacología , Humanos , Endosomas/metabolismo , ADN/química , Plásmidos , Células HeLaRESUMEN
Cell-penetrating peptides (CPPs) are widely used for the intracellular delivery of a variety of cargo molecules, including small molecules, peptides, nucleic acids, and proteins. Many cationic and amphiphilic CPPs have been developed; however, there have been few reports regarding hydrophobic CPPs. Herein, we have developed stapled hydrophobic CPPs based on the hydrophobic CPP, TP10, by introducing an aliphatic carbon side chain on the hydrophobic face of TP10. This side chain maintained the hydrophobicity of TP10 and enhanced the helicity and cell penetrating efficiency. We evaluated the preferred secondary structures, and the ability to deliver 5(6)-carboxyfluorescein (CF) as a model small molecule and plasmid DNA (pDNA) as a model nucleotide. The stapled peptide F-3 with CF, in which the stapling structure was introduced at Gly residues, formed a stable α-helical structure and the highest cell-membrane permeability via an endocytosis process. Meanwhile, peptide F-4 demonstrated remarkable stability when forming a complex with pDNA, making it the optimal choice for the efficient intracellular delivery of pDNA. The results showed that stapled hydrophobic CPPs were able to deliver small molecules and pDNA into cells, and that different stapling positions in hydrophobic CPPs can control the efficiency of the cargo delivery.