RESUMEN
INTRODUCTION: To control the spread of severe disease caused by mutant strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), it is necessary to determine whether continued vaccination enhances humoral and cellular immunity. AIM: In this study, we examined the changes in humoral and cellular immunity to SARS-CoV-2 after administration of the third vaccination in Japanese adults who had received the second dose of messenger ribonucleic acid (mRNA)-1273 vaccine and the third vaccination (BNT162b2 or mRNA-1273). METHODS: We measured anti-spike antibodies in immunoglobulin G (IgG) and anti-nucleocapsid IgG titers in the serum of the vaccinated subjects. To evaluate cellular immunity, the peripheral blood mononuclear cells of inoculated individuals were cultured with spiked proteins, including those of the SARS-CoV-2 conventional strain and Omicron strain, and then subjected to enzyme-linked immunospot (ELISPOT). RESULTS: The results revealed that the anti-SARS-CoV-2 spike protein antibody titer increased after the third vaccination and was maintained; however, a decrease was observed at 6 months after vaccination. SARS-CoV-2 antigen-specific T helper (Th)1 and Th2 cell responses were also induced after the third vaccination and were maintained for 6 months after vaccination. Furthermore, induction of cellular immunity against Omicron strains by the omicron non-compliant vaccines, BNT162b2 or mRNA-1273, was observed. CONCLUSION: These findings demonstrate the effectiveness of vaccination against unknown mutant strains that may occur in the future and provide important insights into vaccination strategies.
Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunidad Humoral/inmunología , Inmunidad Celular/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Masculino , Femenino , Persona de Mediana Edad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Adulto , Anciano , Vacunación , Leucocitos Mononucleares/inmunología , Inmunización SecundariaRESUMEN
Diadumene lineata is a colorful sea anemone with orange stripe tissue of the body column and plain tentacles with red lines. We subjected Diadumene lineata to expression cloning and obtained genes encoding orange (OFP: DiLiFP561) and red fluorescent proteins (RFPs: DiLiFP570 and DiLiFP571). These proteins formed obligatory tetramers. All three proteins showed bright fluorescence with the brightness of 58.3 mM-1·cm-1 (DiLiFP561), 43.9 mM-1·cm-1 (DiLiFP570), and 31.2 mM-1·cm-1 (DiLiFP571), which were equivalent to that of commonly used red fluorescent proteins. Amplitude-weighted average fluorescence lifetimes of DiLiFP561, DiLiFP570 and DiLiFP571 were determined as 3.7, 3.6 and 3.0 ns. We determined a crystal structure of DiLiFP570 at 1.63 Å resolution. The crystal structure of DiLiFP570 revealed that the chromophore has an extended π-conjugated structure similar to that of DsRed. Most of the amino acid residues surrounding the chromophore were common between DiLiFP570 and DiLiFP561, except M159 of DiLiFP570 (Lysine in DiLiFP561), which is located close to the chromophore hydroxyl group. Interestingly, a similar K-to-M substitution has been reported in a red-shifted variant of DsRed (mRFP1). It is a striking observation that the naturally evolved color-change variants are consistent with the mutation induced via protein engineering processes. The newly cloned proteins are promising as orange and red fluorescent markers for imaging with long fluorescence lifetime.
Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Anémonas de Mar/química , Anémonas de Mar/metabolismo , Proteínas Luminiscentes/química , Ingeniería de Proteínas , Clonación Molecular , Mutación , ColorantesRESUMEN
Firefighter turnout gear is essential for reducing occupational exposure to hazardous chemicals during training and fire events. Per-and polyfluoroalkyl substances (PFASs) are observed in firefighter serum, and possible occupational sources include the air and dust of fires, aqueous film-forming foam, and turnout gear. Limited data exist for nonvolatile and volatile PFASs on firefighter turnout gear and the disposition of fluorine on the individual layers of turnout gear. Further implications for exposure to fluorine on turnout gear are not well understood. Three unused turnout garments purchased in 2019 and one purchased in 2008, were analyzed for 50 nonvolatile and 15 volatile PFASs by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. Particle-induced gamma ray emission (PIGE), a surface technique, and instrumental neutron activation analysis (INAA), a bulk technique, were used to measure total fluorine. Bulk characterization of the layers by pyrolysis-GC/MS (py-GC/MS) was used to differentiate fluoropolymer (e.g., PTFE) films from textile layers finished with side-chain polymers. The outer layer, moisture barrier, and thermal layers of the turnout gear all yielded measured concentrations of volatile PFASs that exceeded nonvolatile PFAS concentrations, but the summed molar concentrations made up only a small fraction of total fluorine (0.0016-6.7%). Moisture barrier layers comprised a PTFE film, as determined by py-GC-MS, and gave the highest individual nonvolatile (0.159 mg F/kg) and volatile PFAS (20.7 mg F/kg) as well as total fluorine (122,000 mg F/kg) concentrations. Outer and thermal layers comprised aromatic polyamide-based fibers (aramid) treated with side-chain fluoropolymers and had lower levels of individual nonvolatile and volatile PFASs. Equal concentrations of total fluorine by both PIGE and INAA on the outer and thermal layers is consistent with treatment with a side-chain fluoropolymer coating. New turnout gear should be examined as a potential source of firefighter occupational exposure to nonvolatile and volatile PFASs in future assessments.
Asunto(s)
Bomberos , Fluorocarburos , Exposición Profesional , Cromatografía Liquida , Flúor/análisis , Fluorocarburos/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Exposición Profesional/análisisRESUMEN
BACKGROUND: Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using saliva samples has emerged as a preferred technique since sample collection is easy and noninvasive. In addition, several commercial high-throughput PCR kits that do not require RNA extraction/purification have been developed and are now available for testing saliva samples. However, an optimal protocol for SARS-CoV-2 RT-PCR testing of saliva samples using the RNA extraction/purification-free kits has not yet been established. The aim of this study was to establish optimal preanalytical conditions, including saliva sample collection, storage, and dilution for RNA extraction/purification-free RT-PCR (direct RT-PCR). METHODS: Patients suspected with COVID-19 from March 02 to August 31, 2020, were enrolled in this study. A total of 248 samples, including 43 nasopharyngeal swabs and 205 saliva samples, were collected from 66 patients (37 outpatients and 29 inpatients) and tested using the 2019 Novel Coronavirus Detection Kit (nCoV-DK, Shimadzu Corporation, Kyoto, Japan). RESULTS: The detection results obtained using nasopharyngeal swabs and saliva samples matched 100%. The sampling time, i.e., either awakening time or post-breakfast, had no significant effect on the viral load of the saliva samples. Although saliva samples are routinely diluted to reduce viscosity, we observed that dilution negatively affected PCR sensitivity. Saliva samples could be stored at room temperature (25°C) for 24 hours or at 4°C for up to 48 hours. CONCLUSIONS: This study demonstrated the appropriate conditions of saliva sample collection, processing, and storage, and indicated that the nCoV-DK is applicable to saliva samples, making the diagnosis method simple and safe.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Estudios de Factibilidad , Humanos , Comidas , Nasofaringe , ARN , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saliva/química , Manejo de Especímenes/métodos , TemperaturaRESUMEN
Adzuki bean is an important legume crop originating in temperate regions, with photoperiod in sensitivity being a key factor in its latitudinal adaptation. The Flowering Date1 (FD1) gene has a large effect on the photoperiodic response of flowering time, but the molecular basis for the effect of this locus is undetermined. The present study delimited the FD1 locus to a 17.1 kb sequence, containing a single gene, an E1 ortholog (VaE1). A comparison between Vigna angularis 'Shumari' (photoperiod insensitive) and 'Acc2265' (photoperiod sensitive) identified 29 insertions/deletions and 178 SNPs upstream of VaE1 in the FD1 locus. VaE1 expression in 'Acc2265' was greater under long-day than short-day conditions, whereas VaE1 expression in 'Shumari' was lower regardless of day length. These findings suggested that responsible gene of FD1 is a VaE1, which acts as a floral repressor by being upregulated in response to long-day conditions. The inability to upregulate VaE1 under long-day conditions was linked to its ability to flower under these conditions. These results provide greater understanding of the molecular control of a flowering date and clues enabling the breeding of adzuki bean at higher latitudes.
RESUMEN
BACKGROUND: OnabotulinumtoxinA treatment for glabellar lines (GL) or crow's-feet lines (CFL) was previously studied in Japanese subjects. OBJECTIVE: To assess safety and efficacy of repeated onabotulinumtoxinA for moderate to severe GL and CFL in Japanese subjects. METHODS: This 13-month, double-blind, Phase 3 study randomized subjects to onabotulinumtoxinA 44 U (n = 48) or 32 U (n = 53) for CFL and GL for up to 5 treatments (CFL: 24 U or 12 U; GL: 20 U). Outcomes included proportion of subjects achieving none/mild severity at maximum smile (CFL) and maximum frown (GL), using the Facial Wrinkle Scale with Asian Photonumeric Guide (FWS-A); proportion of ≥1-grade improvement responders at maximum smile and at rest (CFL), at maximum frown and at rest (GL); subject-reported outcomes; and safety. RESULTS: Most subjects were responders (none/mild on FWS-A; CFL: 89.6% [44 U], 84.9% [32 U]; GL: 93.8% [44 U], 98.1% [32 U]) on Day 30. Across treatment groups, responder rates were consistent over time and treatments. Most subjects were satisfied with improved CFL appearance and with treatment. Incidence of treatment-emergent adverse events (TEAEs) and treatment-related TEAEs across groups was similar. All TEAEs but one (peritonitis) were mild or moderate. CONCLUSION: Repeated onabotulinumtoxinA was effective and well tolerated.
Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Técnicas Cosméticas/efectos adversos , Fármacos Neuromusculares/administración & dosificación , Satisfacción del Paciente , Envejecimiento de la Piel/efectos de los fármacos , Adulto , Toxinas Botulínicas Tipo A/efectos adversos , Método Doble Ciego , Ojo , Femenino , Frente , Humanos , Japón , Masculino , Persona de Mediana Edad , Fármacos Neuromusculares/efectos adversos , Medición de Resultados Informados por el Paciente , Rejuvenecimiento , Resultado del TratamientoRESUMEN
Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT)14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense. We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 105 M-1·cm-1. The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.
Asunto(s)
Cnidarios/química , Proteínas Fluorescentes Verdes/genética , Sistemas de Lectura Abierta , Absorción de Radiación , Animales , Clonación Molecular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismoRESUMEN
Lysins are bacteriophage-derived enzymes that degrade bacterial peptidoglycans. Lysin CF-301 is being developed to treat Staphylococcus aureus because of its potent, specific, and rapid bacteriolytic effects. It also demonstrates activity on drug-resistant strains, has a low resistance profile, eradicates biofilms, and acts synergistically with antibiotics. CF-301 was bacteriolytic against 250 S. aureus strains tested including 120 methicillin-resistant S. aureus (MRSA) isolates. In time-kill studies with 62 strains, CF-301 reduced S. aureus by 3-log10 within 30 minutes compared to 6-12 hours required by antibiotics. In bacteremia, CF-301 increased survival by reducing blood MRSA 100-fold within 1 hour. Combinations of CF-301 with vancomycin or daptomycin synergized in vitro and increased survival significantly in staphylococcal-induced bacteremia compared to treatment with antibiotics alone (P < .0001). Superiority of CF-301 combinations with antibiotics was confirmed in 26 independent bacteremia studies. Combinations including CF-301 and antibiotics represent an attractive alternative to antibiotic monotherapies currently used to treat S. aureus bacteremia.
Asunto(s)
Antibacterianos/farmacología , Bacteriemia/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Mucoproteínas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacocinética , Bacteriemia/microbiología , Biopelículas , Sinergismo Farmacológico , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular , Mucoproteínas/química , Profagos/enzimología , Profagos/genética , Infecciones Estafilocócicas/microbiología , Proteínas Virales/farmacologíaRESUMEN
INTRODUCTION: Numerous AI-based systems are being developed to evaluate peripheral blood (PB) smears, but the feasibility of these systems on different smear preparation methods has not been fully understood. In this study, we assessed the impact of different smear preparation methods on the robustness of the deep learning system (DLS). METHODS: We collected 193 PB samples from patients, preparing a pair of smears for each sample using two systems: (1) SP50 smears, prepared by the DLS recommended fully automated slide preparation with double fan drying and staining (May-Grunwald Giemsa, M-G) system using SP50 (Sysmex) and (2) SP1000i smears, prepared by automated smear preparation with single fan drying by SP1000i (Sysmex) and manually stained with M-G. Digital images of PB cells were captured using DI-60 (Sysmex), and the DLS performed cell classification. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were used to evaluate the performance of the DLS. RESULTS: The specificity and NPV for all cell types were 97.4%-100% in both smear sets. The average sensitivity and PPV were 88.9% and 90.1% on SP50 smears, and 87.0% and 83.2% on SP1000i smears, respectively. The lower performance on SP1000i smears was attributed to the intra-lineage misclassification of neutrophil precursors and inter-lineage misclassification of lymphocytes. CONCLUSION: The DLS demonstrated consistent performance in specificity and NPV for smears prepared by a system different from the recommended method. Our results suggest that applying an automated smear preparation system optimized for the DLS system may be important.
RESUMEN
The association between serum tumor necrosis factor receptor (TNFRs: TNFR1, TNFR2) levels and estimated glomerular filtration rate (eGFR) observed in patients with diabetes has not been comprehensively tested in healthy subjects with normal kidney function. It also remains unclear whether TNFR levels differ by age and sex, and between healthy subjects and diabetics. We measured serum TNFR levels in 413 healthy subjects and 292 patients with type 2 diabetes. In healthy subjects, TNFR levels did not differ between men and women. Additionally, TNFR2, but not TNFR1, levels increased with age. In multivariate analysis, TNFR1 was associated only with cystatin C-based eGFR (eGFR-CysC), whereas TNFR2 was associated with systolic blood pressure in addition to eGFR-CysC. Both TNFRs were associated with lower eGFR (eGFR-Cys < 90 mL/min/1.73 m2) even after adjustment for relevant clinical factors. Upon combining healthy subjects and patients with diabetes, the presence of diabetes and elevated glycated hemoglobin level were significant factors in determining TNFR levels. TNFR levels were associated with eGFR-CysC, but were not affected by age and sex in healthy subjects with normal kidney function. TNFR levels in patients with diabetes appeared to be higher than in healthy subjects.
Asunto(s)
Diabetes Mellitus Tipo 2 , Receptores Tipo II del Factor de Necrosis Tumoral , Masculino , Humanos , Femenino , Receptores Tipo I de Factores de Necrosis Tumoral , Tasa de Filtración Glomerular/fisiología , Diabetes Mellitus Tipo 2/patología , Riñón/patología , BiomarcadoresRESUMEN
Antibody tests are used as surveillance tools for informing health policy making. However, results may vary by type of antibody assay and timing of sample collection following infection. Long-term longitudinal cohort studies on antibody assay seropositivity have remained limited, especially among Asian populations. Using blood samples obtained at health physicals (2020-2022) of healthcare workers (mass vaccinated with mRNA COVID-19 vaccines) at a Japanese medical center, we measured N-specific antibodies using two commercially available systems. Roche Elecsys Anti-SARS-CoV-2 measures total antibodies and Abbott Alinity SARS-CoV-2 IgG measures only IgG. Among 2538 participants, seroprevalence was found to be 16.6% via total antibody assay versus 12.9% by IgG-only (including grayzone) by mid-June 2022. For 219 cases with a previous PCR-confirmed infection, positivity was 97.3% using total antibody assay versus 76.3% using IgG-only assay at the 2022 health physical. Using PCR positive test date as day 0, while the positivity of the total antibody assay was retained for the entire study period (until more than 24-months post-infection), the IgG-only assay's positivity declined after month 4. The Mantel-Haenszel test found a significant difference in the two assays' seropositivity, between stratified groups of "within 3 months" and "4 months or more" from infection (P < 0.001). Our study found significant differences in seropositivity over time of total antibody versus IgG-only assays, suggesting an optimal assay for retaining sensitivity over the entire infection period when designing seroprevalence studies.
Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Japón/epidemiología , Estudios Longitudinales , Estudios Seroepidemiológicos , COVID-19/epidemiología , Anticuerpos Antivirales , Personal de Salud , Inmunoglobulina GRESUMEN
Infection-induced SARS-CoV-2 seroprevalence has been studied worldwide. At Juntendo University Hospital (JUH) in Tokyo, Japan, we have consistently conducted serological studies using the blood residue of healthcare workers (HCWs) at annual health examinations since 2020. In this 2023 study (n = 3,594), N-specific seroprevalence (infection-induced) was examined while univariate and multivariate logistic regression analyses were performed to compute ORs of seroprevalence with respect to basic characteristics of participants. We found that the N-specific seroprevalence in 2023 was 54.1%-a jump from 17.7% in 2022, and 1.6% in 2021-with 37.9% as non-PCR-confirmed asymptomatic infection cases. Those younger than 50 (adjusted OR = 1.62; p < .001) and recipients with 4 doses or less of vaccine had a higher risk to be N-positive, ranging from 1.45 times higher for the participants with 4 doses (p < .001) to 4.31 times higher for the participants with 1 dose (p < .001), compared to those with 5 or more doses. Our findings indicate that robust vaccination programs may have helped alleviate symptoms but consequently caused asymptomatic spread in this hospital, especially among younger HCWs. Although having four doses or less was found to be associated with higher risk of infection, the optimal constitution and intervals for effective booster vaccines warrant further investigations.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Japón/epidemiología , Estudios Seroepidemiológicos , COVID-19/epidemiología , COVID-19/prevención & control , Hospitales Universitarios , Personal de Salud , Anticuerpos AntiviralesRESUMEN
Mycobacteroides (Mycobacterium) abscessus, which causes a variety of infectious diseases in humans, is becoming detected more frequently in clinical specimens as cases are spreading worldwide. Taxonomically, M. abscessus is composed of three subspecies of M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense, with different susceptibilities to macrolides. In order to identify rapidly these three subspecies, we determined useful biomarker proteins, including ribosomal protein L29, L30, and hemophore-related protein, for distinguishing the subspecies of M. abscessus using the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) profiles. Thirty-three clinical strains of M. abscessus were correctly identified at the subspecies-level by the three biomarker protein peaks. This study ultimately demonstrates the potential of routine MALDI-MS-based laboratory methods for early identification and treatment for M. abscessus infections.
Asunto(s)
Proteínas Bacterianas , Mycobacterium abscessus , Proteínas Ribosómicas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/análisis , Mycobacterium abscessus/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Biomarcadores/análisis , Biomarcadores/metabolismoRESUMEN
Wickerhamiella is a genus of budding yeast that is mainly isolated from environmental samples, and 40 species have been detected. The yeast isolated from human clinical samples usually only contain three species: W. infanticola, W. pararugosa and W. sorbophila. In this study, we isolated W. tropicalis from a blood sample of a six-year-old female with a history of B-cell precursor lymphoblastic leukemia in Japan in 2022. Though the strain was morphologically identified as Candida species by routine microbiological examinations, it was subsequently identified as W. tropicalis by sequencing the internal transcribed spacer (ITS) of ribosomal DNA (rDNA). The isolate had amino acid substitutions in ERG11 and FKS1 associated with azole and echinocandin resistance, respectively, in Candida species and showed intermediate-resistant to fluconazole and micafungin. The patient was successfully treated with micafungin. Furthermore, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) detected three novel peaks that are specific for W. tropicalis, indicating that MALDI-MS analysis is useful for rapid detection of Wickerhamiella species in routine microbiological examinations.
Asunto(s)
Antifúngicos , Saccharomycetales , Femenino , Humanos , Niño , Antifúngicos/farmacología , Cultivo de Sangre , Micafungina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Pruebas de Sensibilidad Microbiana , CandidaRESUMEN
BACKGROUND: Automated digital morphology systems are utilized for blood cell morphological examination. The aim of this study is to evaluate the accuracy and efficacy of RBC morphological anomaly screening using the CellaVision DM96 (DM96) automated image analysis system. METHODS: The automated analysis of RBC shape, size, and chromasia abnormalities was conducted on the DM96 using 478 blood samples. A manual microscopic review was independently performed. RESULTS: The DM96 preclassified samples as poikilocytosis-positive for 98% of cases with schistocytosis or echinocytosis, 97% of elliptocytosis, and 92% or 65% of cases that were positive for teardrop cells or for target cells, respectively. The accuracy of the DM96 in the detection of RBC size and chromasia abnormalities of iron deficiency anemia cases was higher than direct microscopic observation. CONCLUSIONS: Automated morphological analysis with the DM96 has potential utility in the morphological screening of RBC anomalies that are associated with disease.
Asunto(s)
Automatización , Separación Celular/instrumentación , Eritrocitos/citología , HumanosRESUMEN
Background: Intra- or inter-muscular (EMG-EMG) coherence is a simple and non-invasive method for estimating central nervous system control during human standing tasks. Although this research area has developed, no systematic literature review has been conducted. Objectives: We aimed to map the current literature on EMG-EMG coherence during various standing tasks to identify the research gaps and summarize previous studies comparing EMG-EMG coherence between healthy young and elderly adults. Methods: Electronic databases (PubMed, Cochrane Library, and CINAHL) were searched for articles published from inception to December 2021. We incorporated studies that analyzed EMG-EMG coherence of the postural muscles in various standing tasks. Results: Finally, 25 articles fulfilled the inclusion criteria and involved 509 participants. Most participants were healthy young adults, while only one study included participants with medical conditions. There was some evidence that EMG-EMG coherence could identify differences in standing control between healthy young and elderly adults, although the methodology was highly heterogeneous. Conclusion: The present review indicates that EMG-EMG coherence may help elucidate changes in standing control with age. In future studies, this method should be used in participants with central nervous system disorders to understand better the characteristics of standing balance disabilities.
RESUMEN
Cutibacterium acnes, a resident bacterium of the skin, is a target for antimicrobial treatment of acne vulgaris, because it exacerbates inflammation. Recently, antimicrobial-resistant C. acnes strains have been isolated worldwide, and their prevalence has led to failure of antimicrobial treatment. This study aimed to analyze the antimicrobial resistance of C. acnes strains isolated from Japanese patients with acne vulgaris who visited the hospital and dermatological clinics between 2019 and 2020. Resistance rates to roxithromycin and clindamycin increased during 2019 to 2020 compared with those during 2013 to 2018. Additionally, the proportion of doxycycline-resistant and low-susceptibility strains (minimum inhibitory concentration [MIC] ≥8 µg/mL) increased. No difference in clindamycin resistance rates between patients with and without a history of antimicrobial use was observed during 2019 to 2020, which were significantly higher for patients with a history than for patients without a history during 2016 to 2018. The proportion of high-level clindamycin-resistant strains (MIC ≥256 µg/mL) gradually increased; particularly, the resistance rate was 2.5 times higher in 2020 than that in 2013. The proportion of strains showing high-level clindamycin resistance that also have the exogenous resistance genes erm(X) or erm(50), which confer high resistance, showed a strong positive correlation (r = 0.82). Strains with the multidrug resistance plasmid pTZC1 encoding erm(50) and tet(W) genes were frequent in clinic patients. Notably, most strains with erm(X) or erm(50) were classified as single-locus sequence types A and F (traditional types IA1 and IA2). Our data show that the prevalence of antimicrobial-resistant C. acnes is increasing in patients with acne vulgaris attributable to acquisition of exogenous genes in specific strains. To control the increasing prevalence of antimicrobial-resistant strains, it is important to select the appropriate antimicrobials while taking into consideration the latest information on resistant strains.
Asunto(s)
Acné Vulgar , Antiinfecciosos , Propionibacterium acnes , Humanos , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/epidemiología , Acné Vulgar/genética , Acné Vulgar/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Clindamicina/farmacología , Clindamicina/uso terapéutico , Pueblos del Este de Asia , Pruebas de Sensibilidad Microbiana , Prevalencia , Propionibacterium acnes/genética , Farmacorresistencia Bacteriana/genéticaRESUMEN
There has been a decreasing trend in new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and fatalities worldwide. The virus has been evolving, indicating the potential emergence of new variants and uncertainties. These challenges necessitate continued efforts in disease control and mitigation strategies. We investigated a small cluster of SARS-CoV-2 Omicron variant infections containing a common set of genomic mutations, which provided a valuable model for investigating the transmission mechanism of genetic alterations. We conducted a study at a medical center in Japan during the Omicron surge (sub-lineage BA.5), sequencing the entire SARS-CoV-2 genomes from infected individuals and evaluating the phylogenetic tree and haplotype network among the variants. We compared the mutations present in each strain within the BA.5 strain, TKYnat2317, which was first identified in Tokyo, Japan. From June 29th to July 4th 2022, nine healthcare workers (HCWs) tested positive for SARS-CoV-2 by real-time PCR. During the same period, five patients also tested positive by real-time PCR. Whole genome sequencing revealed that the infected patients belonged to either the isolated BA.2 or BA.5 sub-lineage, while the healthcare worker infections were classified as BF.5. The phylogenetic tree and haplotype network clearly showed the specificity and similarity of the HCW cluster. We identified 12 common mutations in the cluster, including I110V in nonstructural protein 4 (nsp4), A1020S in the Spike protein, and H47Y in ORF7a, compared to the BA.5 reference. Additionally, one case had the extra nucleotide-deletion mutation I27* in ORF10, and low frequencies of genetic alterations were also found in certain instances. The results of genome sequencing showed that the nine HCWs shared a set of genetic mutations, indicating transmission within the cluster. Minor mutations observed in five HCW individuals suggested the emergence of new virus variants. Five amino acid substitutions occurred in nsp3, which could potentially affect virus replication or immune escape. Intra-host evolution also generated additional mutations. The cluster exhibited a mild disease course, with individuals in this case, recovering without requiring any medical treatments. Further investigation is needed to understand the relationship between the genetic evolution of the virus and the symptoms.
RESUMEN
BACKGROUND: Despite the worldwide campaigns of COVID-19 vaccinations, the pandemic is still a major medical and social problem. The Ortho VITROS SARS-CoV-2 spike-specific quantitative IgG (VITROS S-IgG) assay has been developed to assess neutralizing antibody (NT antibody) against SARS-CoV-2 spike (S) antibodies. However, it has not been evaluated in Japan, where the total cases and death toll are lower than the rest of the world. METHODS: The clinical performance of VITROS S-IgG was evaluated by comparing with the NT antibody levels measured by the surrogate virus neutralizing antibody test (sVNT). A total of 332 serum samples from 188 individuals were used. Of these, 219 samples were from 75 COVID-19 patients: 96 samples from 20 severe/critical cases (Group S), and 123 samples from 55 mild/moderate cases (Group M). The remaining 113 samples were from 113 healthcare workers who had received 2 doses of the BNT162b2 vaccine. RESULTS: VITROS S-IgG showed good correlation with the cPass sVNT assay (Spearman rho = 0.91). Both VITROS S-IgG and cPass sVNT showed significantly higher plateau levels of antibodies in Group S compared to Group M. Regarding the humoral immune responses after BNT162b2 vaccination, individuals who were negative for SARS-CoV-2 nucleocapsid (N)-specific antibodies had statistically lower titers of both S-IgG and sVNT compared to individuals with a history of COVID-19 and individuals who were positive for N-specific antibodies without history of COVID-19. In individuals who were positive for N-specific antibodies, S-IgG and sVNT titers were similar to individuals with a history of COVID-19. CONCLUSIONS: Although the automated quantitative immunoassay VITROS S-IgG showed a reasonable correlation with sVNT antibodies, there is some discrepancy between Vitros S-IgG and cPass sVNT in milder cases. Thus, VITROS S-IgG can be a useful diagnostic tool in assessing the immune responses to vaccination and herd immunity. However, careful analysis is necessary to interpret the results.
Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Vacuna BNT162 , SARS-CoV-2 , Anticuerpos Bloqueadores , Anticuerpos Antivirales , Inmunoglobulina G , Anticuerpos Neutralizantes , Prueba de COVID-19RESUMEN
INTRODUCTION: This study evaluated the feasibility of the Sysmex XN-3000 automated hematology analyzer for the assessment of total nucleated cells (TNC) and bone marrow (BM) cell density in routine bone marrow aspiration (BMA) samples. METHODS: A total of 54 BMA samples from 39 hematological patients were evaluated. The number of megakaryocytes was calculated by a specific gating algorithm using the body fluid mode of the WBC differential (WDF) channel. Lipid contents were calculated through a newly developed algorithm utilizing the WDF channel. The ratio of lipid particles over TNCs by the WNR channel was compared with the BM cellularity assessed by the BM biopsy. The myeloid/erythroid (M/E) ratio was calculated by measuring the number of myeloid cells in the WDF channel and the number of nucleated red blood cells (NRBCs) in the WNR channel. RESULTS: XN-3000 counts and microscopic results showed a linear correlation in TNC (R2 = .98, p < .001), megakaryocytes (R2 = .59, p = .002), NRBC (R2 = .84, p < .001), and M/E ratio (R2 = .59, p < .001). There were significant differences in the lipid/TNC ratios of hypercellular, normocellular, and hypocellular BMs measured by XN-3000 (p < .001). Receiver-operating characteristic analysis detected cut-off values of the lipid/TNC ratio of >0.4054 for hypoplasia and <0.157 for hyperplasia. The sensitivity and specificity for hypoplasia were 100% and 88%, and for hyperplasia were 89% and 86%, respectively. CONCLUSION: XN-3000 provides a quantitative assessment of BM cellularity, supporting the qualitative assessment by myelogram and BM biopsy.