Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Fish Biol ; 101(4): 756-779, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35788929

RESUMEN

Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.


Asunto(s)
Ecología , Ecosistema , Animales , Humanos , Peces/fisiología , Cadena Alimentaria , Agua Dulce , Conservación de los Recursos Naturales
2.
Conserv Physiol ; 9(1): coab002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815799

RESUMEN

Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.

3.
J Exp Biol ; 213(Pt 10): 1751-61, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20435826

RESUMEN

Maintaining optimal visual performance is a difficult task in photodynamic coastal and estuarine waters because of the unavoidable tradeoffs between luminous sensitivity and spatial and temporal resolution, yet the visual systems of coastal piscivores remain understudied despite differences in their ecomorphology and microhabitat use. We therefore used electroretinographic techniques to describe the light sensitivities, temporal properties and spectral sensitivities of the visual systems of four piscivorous fishes common to coastal and estuarine waters of the western North Atlantic: striped bass (Morone saxatilis), bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus) and cobia (Rachycentron canadum). Benthic summer flounder exhibited higher luminous sensitivity and broader dynamic range than the three pelagic foragers. The former were at the more sensitive end of an emerging continuum for coastal fishes. By contrast, pelagic species were comparatively less sensitive, but showed larger day-night differences, consistent with their use of diel light-variant photic habitats. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of most species spanned 400-610 nm, with significant day-night differences in striped bass and bluefish. Anadromous striped bass additionally responded to longer wavelengths, similar to many freshwater fishes. Collectively, these results suggest that pelagic piscivores are well adapted to bright photoclimates, which may be at odds with the modern state of eutrified coastal and estuarine waters that they utilize. Recent anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may impede visually foraging piscivores, change selected prey, and eventually restructure ecosystems.


Asunto(s)
Ecosistema , Conducta Alimentaria/fisiología , Peces/fisiología , Visión Ocular/fisiología , Animales , Peso Corporal/fisiología , Intervalos de Confianza , Electrorretinografía , Conducta Alimentaria/efectos de la radiación , Fusión de Flicker/efectos de la radiación , Luz , Modelos Biológicos , Conducta Predatoria/efectos de la radiación , Especificidad de la Especie , Virginia , Visión Ocular/efectos de la radiación
4.
Conserv Physiol ; 8(1): coaa068, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32843967

RESUMEN

Harvest restrictions (e.g. size, sex or species limitations) that are implemented to maintain sustainable fisheries often result in by-catch, e.g. unwanted non-target catch. By-catch is frequently discarded back into the ocean and assumed to survive. However, discarded fishes can succumb to delayed mortality resulting from accumulated stress from fishing activity, and such mortality can impede sustainability efforts. Quantifying reflex and behavioural impairments is a quick and cost-effective method to predict discard-related mortality in some species. We developed and evaluated the effectiveness of a release condition index, based on a reflex-action mortality prediction (RAMP) model, for predicting delayed mortality of black sea bass (Centropristis striata) caught and discarded by the commercial trap fishery in the Mid-Atlantic Bight. Accumulation of impairments, and therefore release condition index, was strongly correlated with delayed mortality of black sea bass discarded and held in sea cages. This is the first release condition index validation study to predict mortality in black sea bass and could be a useful approach for predicting delayed mortality in the commercial fishery.

5.
PLoS One ; 14(6): e0214347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31211780

RESUMEN

Dietary insufficiencies have been well documented to decrease growth rates and survival (and therefore overall production) in fish aquaculture. By contrast, the effects of dietary insufficiencies on the sensory biology of cultured fish remains largely unstudied. Diets based solely on plant protein sources could have advantages over fish-based diets because of the cost and ecological effects of the latter, but plant proteins lack the amino acid taurine. Adequate levels of taurine are, however, necessary for the development of a fully functional visual system in mammals. As part of ongoing studies to determine the suitability of plant-based diets, we investigated the effects of normal and reduced taurine dietary levels on retinal anatomy and function in European sea bass (Dicentrarchus labrax). We could not demonstrate any effects of dietary taurine level on retinal anatomy, nor the functional properties of luminous sensitivity and temporal resolution (measured as flicker fusion frequency). We did, however, find an effect on spectral sensitivity. The peak of spectral sensitivity of individuals fed a 5% taurine diet was rightward shifted (i.e., towards longer wavelengths) relative to that of fish fed a 0% or 1.5% taurine diet. This difference in in spectral sensitivity was due to a relatively lower level of middle wavelength pigment (maximum absorbance .500 nm) in fish fed a 5% taurine diet. Changes in spectral sensitivity resulting from diets containing different taurine levels are unlikely to be detrimental to fish destined for market, but could be in fishes that are being reared for stock enhancement programs.


Asunto(s)
Lubina/fisiología , Taurina/administración & dosificación , Visión Ocular/efectos de los fármacos , Alimentación Animal , Animales , Peso Corporal/efectos de los fármacos , Explotaciones Pesqueras , Retina/anatomía & histología , Retina/efectos de los fármacos , Retina/fisiología , Taurina/farmacología
6.
Conserv Physiol ; 4(1): cov059, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27382467

RESUMEN

Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental-applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management.

7.
Physiol Biochem Zool ; 86(3): 285-97, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23629879

RESUMEN

Visual temporal resolution and spectral sensitivity of three coastal teleost species (common snook [Centropomus undecimalis], gray snapper [Lutjanus griseus], and pinfish [Lagodon rhomboides]) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum critical flicker fusion frequency (CFFmax). Photopic CFFmax was significantly higher than scotopic CFFmax in all species. The snapper had the shortest photoreceptor response latency time (26.7 ms) and the highest CFFmax (47 Hz), suggesting that its eyes are adapted for a brighter photic environment. In contrast, the snook had the longest response latency time (36.8 ms) and lowest CFFmax (40 Hz), indicating that its eyes are adapted for a dimmer environment or nocturnal lifestyle. Species spectral responses ranged from 360 to 620 nm and revealed the presence of rods sensitive to dim and twilight conditions, as well as multiple cone visual pigments providing the basis for color and contrast discrimination. Collectively, our results demonstrate differences in visual function among species inhabiting the Indian River Lagoon system, representative of their unique ecology and life histories.


Asunto(s)
Ecosistema , Peces/fisiología , Visión Ocular , Animales , Electrorretinografía , Estuarios , Florida , Cadena Alimentaria , Luz , Conducta Predatoria , Tiempo de Reacción , Células Fotorreceptoras Retinianas Conos/fisiología , Pigmentos Retinianos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Especificidad de la Especie , Factores de Tiempo
8.
Biol Open ; 2(12): 1371-81, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24285711

RESUMEN

The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata]) were studied via electroretinography (ERG). Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400-610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes.

9.
J Exp Biol ; 211(Pt 22): 3601-12, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18978225

RESUMEN

Maintaining optimal visual performance is a difficult task in the photodynamic coastal and estuarine waters in which western North Atlantic sciaenid fishes support substantial commercial and recreational fisheries. Unavoidable tradeoffs exist between visual sensitivity and resolution, yet sciaenid visual systems have not been characterized despite strong species-specific ecomorphological and microhabitat differentiation. We therefore used electroretinographic techniques to describe the light sensitivities, temporal properties, and spectral characteristics of the visual systems of five sciaenids common to Chesapeake Bay, USA: weakfish (Cynoscion regalis), spotted seatrout (Cynoscion nebulosus), red drum (Sciaenops ocellatus), Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus xanthurus). Benthic sciaenids exhibited higher sensitivities and broader dynamic ranges in white light V/logI experiments than more pelagic forms. Sensitivities of the former were at the lower (more sensitive) end of an emerging continuum for coastal fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat, but no specific differences at dimmer intensities. Spectral responses of most sciaenids spanned 400-610 nm, with significant diel differences in weakfish and Atlantic croaker. Weakfish, a crepuscular predator, also responded to ultraviolet wavelengths; this characteristic may be more useful under less turbid conditions. Collectively, these results suggest that sciaenids are well adapted to the dynamic photoclimate of the coastal and estuarine waters they inhabit. However, the recent anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, has amplified the importance of characterizing visual function in managed aquatic fauna.


Asunto(s)
Peces/fisiología , Visión Ocular , Animales , Océano Atlántico , Visión de Colores , Electrorretinografía/métodos , Fusión de Flicker , Luz
10.
J Exp Biol ; 211(Pt 9): 1504-11, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18424685

RESUMEN

Sciaenid fishes are important models of fish sound production, but investigations into their auditory abilities are limited to acoustic pressure measurements on five species. In this study, we used auditory brainstem response (ABR) to assess the pressure and particle acceleration thresholds of six sciaenid fishes commonly found in Chesapeake Bay, eastern USA: weakfish (Cynoscion regalis), spotted seatrout (Cynoscion nebulosus), Atlantic croaker (Micropogonias undulatus), red drum (Sciaenops ocellatus), spot (Leiostomus xanthurus) and northern kingfish (Menticirrhus saxatilis). Experimental subjects were presented with pure 10 ms tone bursts in 100 Hz steps from 100 Hz to 1.2 kHz using an airborne speaker. Sound stimuli, monitored with a hydrophone and geophone, contained both pressure and particle motion components. Sound pressure and particle acceleration thresholds varied significantly among species and between frequencies; audiograms were notably flatter for acceleration than pressure at low frequencies. Thresholds of species with diverticulae projecting anteriorly from their swim bladders (weakfish, spotted seatrout, and Atlantic croaker) were typically but not significantly lower than those of species lacking such projections (red drum, spot, northern kingfish). Sciaenids were most sensitive at low frequencies that overlap the peak frequencies of their vocalizations. Auditory thresholds of these species were used to estimate idealized propagation distances of sciaenid vocalizations in coastal and estuarine environments.


Asunto(s)
Comunicación Animal , Umbral Auditivo/fisiología , Perciformes/fisiología , Estimulación Acústica , Sacos Aéreos/anatomía & histología , Sacos Aéreos/fisiología , Animales , Presión , Espectrografía del Sonido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA