Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 41(1): 153-173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34636965

RESUMEN

KEY MESSAGE: In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses. Whereas angiosperms repair DNA double-strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in the moss Physcomitrella homologous recombination (HR) is the main DNA-DSB repair pathway. HR facilitates the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in Physcomitrella using haploid plants and autodiploid plants, generated via an artificial WGD. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the WGD event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p < 0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.


Asunto(s)
Bryopsida/genética , Marcación de Gen , Poliploidía , Transcripción Genética
2.
Am J Pathol ; 190(8): 1632-1642, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32339498

RESUMEN

Recent studies deciphering the transcriptional profile of choroidal neovascularization (CNV) in body donor eyes with neovascular age-related macular degeneration are limited by the time span from death to preservation and the associated 5'-RNA degradation. This study therefore used CNV and control specimens that were formalin-fixed and paraffin-embedded immediately after surgical extraction and analyzed them by a 3'-RNA sequencing approach. Transcriptome profiles were analyzed to estimate content of immune and stromal cells and to define disease-associated gene signatures by using statistical and bioinformatics methods. This study identified 158 differentially expressed genes (DEGs) that were significantly increased in CNV compared with control tissue. Cell type enrichment analysis revealed a diverse cellular landscape with an enrichment of endothelial cells, macrophages, T cells, and natural killer T cells in the CNV. Gene ontology enrichment analysis found that DEGs contributed to blood vessel development, extracellular structure organization, response to wounding, and several immune-related terms. The S100 calcium-binding proteins A8 (S100A8) and A9 (S100A9) emerged among the top DEGs, as confirmed by immunohistochemistry on CNV tissue and protein analysis of vitreous samples. This study provides a high-resolution RNA-sequencing-based transcriptional signature of human CNV, characterizes its compositional pattern of immune and stromal cells, and reveals S100A8/A9 to be a novel biomarker and promising target for therapeutics and diagnostics directed at age-related macular degeneration.


Asunto(s)
Neovascularización Coroidal/diagnóstico , Complejo de Antígeno L1 de Leucocito/metabolismo , Degeneración Macular/diagnóstico , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Neovascularización Coroidal/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Macrófagos/metabolismo , Degeneración Macular/metabolismo , Masculino , Transcriptoma
3.
J Med Virol ; 92(10): 2081-2086, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32374427

RESUMEN

SARS-CoV-2 is assumed to use angiotensin-converting enzyme 2 (ACE2) and other auxiliary proteins for cell entry. Recent studies have described conjunctival congestion in 0.8% of patients with laboratory-confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and there has been speculation that SARS-CoV-2 can be transmitted through the conjunctiva. However, it is currently unclear whether conjunctival epithelial cells express ACE2 and its cofactors. In this study, a total of 38 conjunctival samples from 38 patients, including 12 healthy conjunctivas, 12 melanomas, seven squamous cell carcinomas, and seven papilloma samples, were analyzed using high-throughput RNA sequencing to assess messenger RNA (mRNA) expression of the SARS-CoV-2 receptor ACE2 and its cofactors including TMPRSS2, ANPEP, DPP4, and ENPEP. ACE2 protein expression was assessed in eight healthy conjunctival samples using immunohistochemistry. Our results show that the SARS-CoV-2 receptor ACE2 is not substantially expressed in conjunctival samples on the mRNA (median: 0.0 transcripts per million [TPM], min: 0.0 TPM, max: 1.7 TPM) and protein levels. Similar results were obtained for the transcription of other auxiliary molecules. In conclusion, this study finds no evidence for a significant expression of ACE2 and its auxiliary mediators for cell entry in conjunctival samples, making conjunctival infection with SARS-CoV-2 via these mediators unlikely.


Asunto(s)
COVID-19/virología , Carcinoma de Células Escamosas/virología , Neoplasias del Ojo/virología , Melanoma/virología , Papiloma/virología , Receptores Virales/genética , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/patología , COVID-19/cirugía , Carcinoma de Células Escamosas/complicaciones , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/cirugía , Estudios de Casos y Controles , Conjuntiva/patología , Conjuntiva/cirugía , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Neoplasias del Ojo/complicaciones , Neoplasias del Ojo/patología , Neoplasias del Ojo/cirugía , Expresión Génica , Glutamil Aminopeptidasa/genética , Glutamil Aminopeptidasa/metabolismo , Humanos , Inmunohistoquímica , Masculino , Melanoma/complicaciones , Melanoma/patología , Melanoma/cirugía , Persona de Mediana Edad , Papiloma/complicaciones , Papiloma/patología , Papiloma/cirugía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
4.
Mol Cell Proteomics ; 16(9): 1563-1577, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28637836

RESUMEN

Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K-means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular microenvironment to regulate cellular differentiation, and demonstrates, for the first time, the potential of Xellulin as versatile tool promoting an in vivo-like phenotype in primary and propagated cell culture.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Celulosa/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Separación Celular , Células Cultivadas , Análisis por Conglomerados , Colágeno/farmacología , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Front Zool ; 15: 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29743927

RESUMEN

BACKGROUND: The European spurge hawkmoth, Hyles euphorbiae (Lepidoptera, Sphingidae), has been intensively studied as a model organism for insect chemical ecology, cold hardiness and evolution of species delineation. To understand species isolation mechanisms at a molecular level, this study aims at determining genetic factors underlying two adaptive ecological trait candidates, phorbol ester (TPA) detoxification and seasonal cold acclimation. METHOD: A draft transcriptome of H. euphorbiae was generated using Illumina sequencing, providing the first genomic resource for the hawkmoth subfamily Macroglossinae. RNA expression levels in tissues of experimental TPA feeding larvae and cooled pupae was compared to levels in control larvae and pupae using 26 bp RNA sequence tag libraries (DeepSuperSAGE). Differential gene expression was assessed by homology searches of the tags in the transcriptome. RESULTS: In total, 389 and 605 differentially expressed transcripts for detoxification and cold hardiness, respectively, could be identified and annotated with proteins. The majority (22 of 28) of differentially expressed detox transcripts of the four 'drug metabolism' enzyme groups (cytochrome P450 (CYP), carboxylesterases (CES), glutathione S-transferases (GST) and lipases) are up-regulated. Triacylglycerol lipase was significantly over proportionally annotated among up-regulated detox transcripts. We record several up-regulated lipases, GSTe2, two CESs, CYP9A21, CYP6BD6 and CYP9A17 as candidate genes for further H. euphorbiae TPA detoxification analyses. Differential gene expression of the cold acclimation treatment is marked by metabolic depression with enriched Gene Ontology terms among down-regulated transcripts almost exclusively comprising metabolism, aerobic respiration and dissimilative functions. Down-regulated transcripts include energy expensive respiratory proteins like NADH dehydrogenase, cytochrome oxidase and ATP synthase. Gene expression patterns show shifts in carbohydrate metabolism towards cryoprotectant production. The Glycolysis enzymes, G1Pase, A1e, Gpi and an Akr isoform are up-regulated. Glycerol, an osmolyte which lowers the body liquid supercooling point, appears to be the predominant polyol cryoprotectant in H. euphorbiae diapause pupae. Several protein candidates involved in glucose, glycerol, myo-inositol and potentially sorbitol and trehalose synthesis were identified. CONCLUSIONS: A majority of differently expressed transcripts unique for either detoxification or cold hardiness indicates highly specialized functional adaptation which may have evolved from general cell metabolism and stress response.The transcriptome and extracted candidate biomarkers provide a basis for further gene expression studies of physiological processes and adaptive traits in H. euphorbiae.

6.
BMC Plant Biol ; 14: 176, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24972689

RESUMEN

BACKGROUND: Pollen of common ragweed (Ambrosia artemisiifolia) is a main cause of allergic diseases in Northern America. The weed has recently become spreading as a neophyte in Europe, while climate change may also affect the growth of the plant and additionally may also influence pollen allergenicity. To gain better insight in the molecular mechanisms in the development of ragweed pollen and its allergenic proteins under global change scenarios, we generated SuperSAGE libraries to identify differentially expressed transcripts. RESULTS: Ragweed plants were grown in a greenhouse under 380 ppm CO2 and under elevated level of CO2 (700 ppm). In addition, drought experiments under both CO2 concentrations were performed. The pollen viability was not altered under elevated CO2, whereas drought stress decreased its viability. Increased levels of individual flavonoid metabolites were found under elevated CO2 and/or drought. Total RNA was isolated from ragweed pollen, exposed to the four mentioned scenarios and four SuperSAGE libraries were constructed. The library dataset included 236,942 unique sequences, showing overlapping as well as clear differently expressed sequence tags (ESTs). The analysis targeted ESTs known in Ambrosia, as well as in pollen of other plants. Among the identified ESTs, those encoding allergenic ragweed proteins (Amb a) increased under elevated CO2 and drought stress. In addition, ESTs encoding allergenic proteins in other plants were also identified. CONCLUSIONS: The analysis of changes in the transcriptome of ragweed pollen upon CO2 and drought stress using SuperSAGE indicates that under global change scenarios the pollen transcriptome was altered, and impacts the allergenic potential of ragweed pollen.


Asunto(s)
Alérgenos/inmunología , Ambrosia/genética , Ambrosia/fisiología , Dióxido de Carbono/farmacología , Sequías , Perfilación de la Expresión Génica , Polen/inmunología , Estrés Fisiológico/genética , Ambrosia/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Bases de Datos Genéticas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Metabolismo Secundario/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Supervivencia Tisular/efectos de los fármacos , Supervivencia Tisular/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Mol Phylogenet Evol ; 71: 55-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24513576

RESUMEN

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C3 vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.


Asunto(s)
Adaptación Biológica , Bromeliaceae/genética , Filogenia , Biodiversidad , América Latina , Sudoeste de Estados Unidos
8.
BMC Bioinformatics ; 14 Suppl 1: S2, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23368899

RESUMEN

BACKGROUND: The rationale for gathering information from plants procuring nitrogen through symbiotic interactions controlled by a common genetic program for a sustainable biofuel production is the high energy demanding application of synthetic nitrogen fertilizers. We curated sequence information publicly available for the biofuel plant sugarcane, performed an analysis of the common SYM pathway known to control symbiosis in other plants, and provide results, sequences and literature links as an online database. METHODS: Sugarcane sequences and informations were downloaded from the nucEST database, cleaned and trimmed with seqclean, assembled with TGICL plus translating mapping method, and annotated. The annotation is based on BLAST searches against a local formatted plant Uniprot90 generated with CD-HIT for functional assignment, rpsBLAST to CDD database for conserved domain analysis, and BLAST search to sorghum's for Gene Ontology (GO) assignment. Gene expression was normalized according the Unigene standard, presented as ESTs/100 kb. Protein sequences known in the SYM pathway were used as queries to search the SymGRASS sequence database. Additionally, antimicrobial peptides described in the PhytAMP database served as queries to retrieve and generate expression profiles of these defense genes in the libraries compared to the libraries obtained under symbiotic interactions. RESULTS: We describe the SymGRASS, a database of sugarcane orthologous genes involved in arbuscular mycorrhiza (AM) and root nodule (RN) symbiosis. The database aggregates knowledge about sequences, tissues, organ, developmental stages and experimental conditions, and provides annotation and level of gene expression for sugarcane transcripts and SYM orthologous genes in sugarcane through a web interface. Several candidate genes were found for all nodes in the pathway, and interestingly a set of symbiosis specific genes was found. CONCLUSIONS: The knowledge integrated in SymGRASS may guide studies on molecular, cellular and physiological mechanisms by which sugarcane controls the establishment and efficiency of endophytic associations. We believe that the candidate sequences for the SYM pathway together with the pool of exclusively expressed tentative consensus (TC) sequences are crucial for the design of molecular studies to unravel the mechanisms controlling the establishment of symbioses in sugarcane, ultimately serving as a basis for the improvement of grass crops.


Asunto(s)
Bases de Datos Genéticas , Genes de Plantas , Micorrizas/genética , Saccharum/genética , Simbiosis/genética , Etiquetas de Secuencia Expresada , Nódulos de las Raíces de las Plantas/genética , Programas Informáticos , Transcriptoma
9.
Ecotoxicol Environ Saf ; 75(1): 94-101, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21944693

RESUMEN

Molluscs are raising attention as ecotoxicological test organisms due to their high diversity and ecological importance. The ovoviviparous prosobranch gastropod Potamopyrgus antipodarum (freshwater mudsnail) responds very sensitively to xenobiotics and has therefore been proposed as OECD standard test organism. Endocrine disrupting chemicals influence the reproduction of P. antipodarum, which can be assessed by embryo numbers in the brood pouch. However, the knowledge about the endocrine system of P. antipodarum is rather limited. The aim of this study was to identify an estrogen receptor in the endocrine system of P. antipodarum and to investigate if this receptor is differentially expressed under exposure to (xeno-)hormones (17α-ethinylestradiol, bisphenol A and 17α-methyltestosterone). The DNA-binding domain of the identified ER-like transcript has an amino acid identity of 92 percent compared to the ER of the gastropod Nucella lapillus (84 percent to human ERα) and 83 percent in the ligand binding domain (38 percent to human ERα). Furthermore, the P. antipodarum ER is transcriptionally regulated as shown by quantitative real-time PCRs of (xeno-)hormone exposed snails. 17α-ethinylestradiol and bisphenol A exposure resulted in a transitory ER-mRNA increase while17α-methyltestosterone caused a transitory reduction of ER-mRNA. In addition the solvent dimethyl sulfoxide had also a modulating effect on the receptor.


Asunto(s)
Hormonas/toxicidad , Receptores de Estrógenos/metabolismo , Caracoles/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Compuestos de Bencidrilo , Disruptores Endocrinos/toxicidad , Sistema Endocrino/efectos de los fármacos , Estrógenos/farmacología , Estrógenos no Esteroides/toxicidad , Etinilestradiol/toxicidad , Agua Dulce/química , Humanos , Metiltestosterona/toxicidad , Fenoles/toxicidad , Reproducción/efectos de los fármacos , Caracoles/efectos de los fármacos , Xenobióticos/toxicidad
10.
Nat Commun ; 13(1): 2560, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538074

RESUMEN

Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses. Throughout the infection course, 17 non-synonymous intra-host mutations are noted, with 15 (88.2%) having been previously described as prominent immune escape mutations (S:E484K, S:D950N, S:P681H, S:N501Y, S:del(9), N:S235F and S:H655Y) in VOCs. The high frequency of these non-synonymous mutations is consistent with multiple events of convergent evolution. Thus, our results suggest that specific mutations in the SARS-CoV-2 genome may represent positions with a fitness advantage, and may serve as targets in future vaccine and therapeutics development for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Huésped Inmunocomprometido , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
BMC Plant Biol ; 11: 31, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21320317

RESUMEN

BACKGROUND: The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. RESULTS: We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress.Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. CONCLUSIONS: This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE.


Asunto(s)
Cicer/genética , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Cloruro de Sodio/farmacología , Cicer/efectos de los fármacos , Biología Computacional , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Salinidad , Análisis de Secuencia de ADN
12.
Am J Bot ; 98(5): 872-95, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21613186

RESUMEN

PREMISE: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. METHODS: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. RESULTS: Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. CONCLUSIONS: Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.


Asunto(s)
Bromeliaceae/genética , Evolución Molecular , Filogenia , Plastidios/genética , Teorema de Bayes , Evolución Biológica , Bromeliaceae/clasificación , ADN de Plantas/genética , Genes de Plantas , Funciones de Verosimilitud , Datos de Secuencia Molecular , NADH Deshidrogenasa/genética , Proteínas de Plantas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
Theor Appl Genet ; 120(7): 1415-41, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20098978

RESUMEN

This study presents the development and mapping of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in chickpea. The mapping population is based on an inter-specific cross between domesticated and non-domesticated genotypes of chickpea (Cicer arietinum ICC 4958 x C. reticulatum PI 489777). This same population has been the focus of previous studies, permitting integration of new and legacy genetic markers into a single genetic map. We report a set of 311 novel SSR markers (designated ICCM-ICRISAT chickpea microsatellite), obtained from an SSR-enriched genomic library of ICC 4958. Screening of these SSR markers on a diverse panel of 48 chickpea accessions provided 147 polymorphic markers with 2-21 alleles and polymorphic information content value 0.04-0.92. Fifty-two of these markers were polymorphic between parental genotypes of the inter-specific population. We also analyzed 233 previously published (H-series) SSR markers that provided another set of 52 polymorphic markers. An additional 71 gene-based SNP markers were developed from transcript sequences that are highly conserved between chickpea and its near relative Medicago truncatula. By using these three approaches, 175 new marker loci along with 407 previously reported marker loci were integrated to yield an improved genetic map of chickpea. The integrated map contains 521 loci organized into eight linkage groups that span 2,602 cM, with an average inter-marker distance of 4.99 cM. Gene-based markers provide anchor points for comparing the genomes of Medicago and chickpea, and reveal extended synteny between these two species. The combined set of genetic markers and their integration into an improved genetic map should facilitate chickpea genetics and breeding, as well as translational studies between chickpea and Medicago.


Asunto(s)
Mapeo Cromosómico , Cicer/genética , Genes de Plantas/genética , Sitios Genéticos/genética , Medicago truncatula/genética , Repeticiones de Minisatélite/genética , Polimorfismo de Nucleótido Simple/genética , Secuencia de Bases , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Ligamiento Genético , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico
14.
Genes (Basel) ; 11(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640722

RESUMEN

Coordinated by ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR), two highly conserved kinases, DNA damage repair ensures genome integrity and survival in all organisms. The Arabidopsis thaliana (A. thaliana) orthologues are well characterized and exhibit typical mammalian characteristics. We mutated the Physcomitrellapatens (P. patens) PpATM and PpATR genes by deleting functionally important domains using gene targeting. Both mutants showed growth abnormalities, indicating that these genes, particularly PpATR, are important for normal vegetative development. ATR was also required for repair of both direct and replication-coupled double-strand breaks (DSBs) and dominated the transcriptional response to direct DSBs, whereas ATM was far less important, as shown by assays assessing resistance to DSB induction and SuperSAGE-based transcriptomics focused on DNA damage repair genes. These characteristics differed significantly from the A. thaliana genes but resembled those in yeast (Saccharomyces cerevisiae). PpATR was not important for gene targeting, pointing to differences in the regulation of gene targeting and direct DSB repair. Our analysis suggests that ATM and ATR functions can be substantially diverged between plants. The differences in ATM and ATR reflect the differences in DSB repair pathway choices between A. thaliana and P. patens, suggesting that they represent adaptations to different demands for the maintenance of genome stability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Bryopsida/genética , Proteínas de Plantas/genética , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Bryopsida/crecimiento & desarrollo , Roturas del ADN de Doble Cadena , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos
15.
BMC Genomics ; 9: 553, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19025623

RESUMEN

BACKGROUND: Drought is the major constraint to increase yield in chickpea (Cicer arietinum). Improving drought tolerance is therefore of outmost importance for breeding. However, the complexity of the trait allowed only marginal progress. A solution to the current stagnation is expected from innovative molecular tools such as transcriptome analyses providing insight into stress-related gene activity, which combined with molecular markers and expression (e)QTL mapping, may accelerate knowledge-based breeding. SuperSAGE, an improved version of the serial analysis of gene expression (SAGE) technique, generating genome-wide, high-quality transcription profiles from any eukaryote, has been employed in the present study. The method produces 26 bp long fragments (26 bp tags) from defined positions in cDNAs, providing sufficient sequence information to unambiguously characterize the mRNAs. Further, SuperSAGE tags may be immediately used to produce microarrays and probes for real-time-PCR, thereby overcoming the lack of genomic tools in non-model organisms. RESULTS: We applied SuperSAGE to the analysis of gene expression in chickpea roots in response to drought. To this end, we sequenced 80,238 26 bp tags representing 17,493 unique transcripts (UniTags) from drought-stressed and non-stressed control roots. A total of 7,532 (43%) UniTags were more than 2.7-fold differentially expressed, and 880 (5.0%) were regulated more than 8-fold upon stress. Their large size enabled the unambiguous annotation of 3,858 (22%) UniTags to genes or proteins in public data bases and thus to stress-response processes. We designed a microarray carrying 3,000 of these 26 bp tags. The chip data confirmed 79% of the tag-based results, whereas RT-PCR confirmed the SuperSAGE data in all cases. CONCLUSION: This study represents the most comprehensive analysis of the drought-response transcriptome of chickpea available to date. It demonstrates that--inter alias--signal transduction, transcription regulation, osmolyte accumulation, and ROS scavenging undergo strong transcriptional remodelling in chickpea roots already 6 h after drought stress. Certain transcript isoforms characterizing these processes are potential targets for breeding for drought tolerance. We demonstrate that these can be easily accessed by micro-arrays and RT-PCR assays readily produced downstream of SuperSAGE. Our study proves that SuperSAGE owns potential for molecular breeding also in non-model crops.


Asunto(s)
Cicer/genética , Sequías , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Cicer/metabolismo , Análisis por Conglomerados , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/metabolismo , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Estrés Fisiológico
16.
Hortic Res ; 5: 45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30181885

RESUMEN

The Lathyrus cicera transcriptome was analysed in response to rust (Uromyces pisi) infection to develop novel molecular breeding tools with potential for genetic mapping of resistance in this robust orphan legume species. One RNA-seq library each was generated from control and rust-inoculated leaves from two L. cicera genotypes with contrasting quantitative resistance, de novo assembled into contigs and sequence polymorphisms were identified. In toto, 19,224 SNPs differentiate the susceptible from the partially resistant genotype's transcriptome. In addition, we developed and tested 341 expressed E-SSR markers from the contigs, of which 60.7% varied between the two L. cicera genotypes. A first L. cicera linkage map was created using part of the developed markers in a RIL population from the cross of the two genotypes. This map contains 307 markers, covered 724.2 cM and is organised in 7 major and 2 minor linkage groups, with an average mapping interval of 2.4 cM. The genic markers also enabled us to compare their position in L. cicera map with the physical position of the same markers mapped on Medicago truncatula genome, highlighting a high macrosyntenic conservation between both species. This study provides a large new set of genic polymorphic molecular markers with potential for mapping rust resistances. It represents the first step towards genomics-assisted precision breeding in L. cicera.

17.
Eye (Lond) ; 32(11): 1772-1782, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30065361

RESUMEN

PURPOSE: To investigate the expression profile of the hypoxia-inducible transcription factor-1α (HIF-1α) and its downstream targets in malignancies of the ocular adnexa and to determine its relevance as a prognostic factor for clinical outcome. METHODS: We included 49 subjects with malignant tumours (25 squamous cell carcinomas (SCC), 15 non-Hodgkin lymphomas, 9 melanomas) and 30 patients with benign tumours of the ocular adnexa (13 papillomas, 7 reactive lymphoid hyperplasias (RLHs) and 10 nevi) as controls. We quantified HIF-1α protein expression by immunohistochemistry and assessed the association between HIF-1α and clinical outcome via Kaplan-Meier analysis. Furthermore, we assessed the expression of HIF-1α downstream factors by transcriptional sequencing using the MACE (massive analysis of cDNA ends) technology. RESULTS: SCCs revealed a strong HIF-1α expression in 61% of tumour cells in comparison with only 22% in papillomas (p < 0.0001). In contrast, malignant melanomas and lymphomas revealed a similar HIF-1α expression compared with nevi and RLHs. Transcriptional sequencing and Gene Ontology Cluster analysis demonstrated 37 hypoxia-associated factors, including HIF-1α, VEGF, SFRP1 and LOXL2 that are significantly increased in SCC and may contribute to tumour proliferation, angiogenesis, and metastasis. Association analysis between HIF-1α immunoreactivity and clinical outcome revealed a trend towards an unfavourable prognosis in malignant tumours with increased HIF-1α expression. CONCLUSIONS: HIF-1α protein is increased in malignant tumours of the ocular adnexa, which is associated with an increase in multiple HIF-1α-downstream factors and a trend towards an unfavourable clinical outcome.


Asunto(s)
Neoplasias del Ojo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Adulto , Anciano , Carcinoma de Células Escamosas/metabolismo , Neoplasias del Ojo/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Linfoma no Hodgkin/metabolismo , Masculino , Melanoma/metabolismo , Persona de Mediana Edad , Nevo/metabolismo , Papiloma/metabolismo , Pronóstico
18.
Meta Gene ; 8: 30-2, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27014588

RESUMEN

In the present paper we show a survey of the Asterias rubens sea star genome for genes associated with NF-kappa-B proteins implied in the immune response. The NF-kappa B gene, into 2 subunits, was found in this invertebrate.

19.
Invest Ophthalmol Vis Sci ; 57(4): 1706-13, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27064390

RESUMEN

PURPOSE: Extracellular microRNAs (miRNAs) in aqueous humor were suggested to have a role in transcellular signaling and may serve as disease biomarkers. The authors adopted next-generation sequencing (NGS) techniques to further characterize the miRNA profile in single samples of 60 to 80 µL human aqueous humor. METHODS: Samples were obtained at the outset of cataract surgery in nine independent, otherwise healthy eyes. Four samples were used to extract RNA and generate sequencing libraries, followed by an adapter-driven amplification step, electrophoretic size selection, sequencing, and data analysis. Five samples were used for quantitative PCR (qPCR) validation of NGS results. Published NGS data on circulating miRNAs in blood were analyzed in comparison. RESULTS: One hundred fifty-eight miRNAs were consistently detected by NGS in all four samples; an additional 59 miRNAs were present in at least three samples. The aqueous humor miRNA profile shows some overlap with published NGS-derived inventories of circulating miRNAs in blood plasma with high prevalence of human miR-451a, -21, and -16. In contrast to blood, miR-184, -4448, -30a, -29a, -29c, -19a, -30d, -205, -24, -22, and -3074 were detected among the 20 most prevalent miRNAs in aqueous humor. Relative expression patterns of miR-451a, -202, and -144 suggested by NGS were confirmed by qPCR. CONCLUSIONS: Our data illustrate the feasibility of miRNA analysis by NGS in small individual aqueous humor samples. Intraocular cells as well as blood plasma contribute to the extracellular aqueous humor miRNome. The data suggest possible roles of miRNA in intraocular cell adhesion and signaling by TGF-ß and Wnt, which are important in intraocular pressure regulation and glaucoma.


Asunto(s)
Regulación de la Expresión Génica , Glaucoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , ARN/genética , Anciano , Humor Acuoso/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Glaucoma/metabolismo , Humanos , MicroARNs/biosíntesis , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Valores de Referencia
20.
Sex Dev ; 8(4): 178-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24820130

RESUMEN

In chicken, the left and right female gonads undergo a completely different program during development. To learn more about the molecular factors underlying side-specific development and to identify potential sex- and side-specific genes in developing gonads, we separately performed next-generation sequencing-based deepSuperSAGE transcription profiling from left and right, female and male gonads of 19-day-old chicken embryos. A total of 836 transcript variants were significantly differentially expressed (p < 10(-5)) between combined male and female gonads. Left-right comparison revealed 1,056 and 822 differentially (p < 10(-5)) expressed transcript variants for male and female gonads, respectively, of which 72 are side-specific in both sexes. At least some of these may represent key players for lateral development in birds. Additionally, several genes with laterally differential expression in the ovaries seem to determine female gonads for growth or regression, whereas right-left differences in testes are mostly limited to the differentially expressed genes present in both sexes. With a few exceptions, side-specific genes are not located on the sex chromosomes. The large differences in lateral gene expression in the ovaries in almost all metabolic pathways suggest that the regressing right gonad might have undergone a change of function during evolution.


Asunto(s)
Tipificación del Cuerpo/genética , Pollos/genética , Gónadas/embriología , Animales , Embrión de Pollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Masculino , Ovario/metabolismo , Caracteres Sexuales , Diferenciación Sexual/genética , Testículo/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA