Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Development ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007397

RESUMEN

Many genes are known to regulate retinal regeneration following widespread tissue damage. Conversely, genes controlling regeneration following limited cell loss, per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 101 genes identified seven knockouts that inhibited and eleven that promoted RGC regeneration. Surprisingly, 35 of 36 genes known/implicated as being required for regeneration following widespread retinal damage were not required for RGC regeneration, and seven even enhanced regeneration kinetics, including proneural factors neurog1, olig2, and ascl1a. Mechanistic analyses revealed ascl1a disruption increased the propensity of progenitor cells to produce RGCs; i.e., increased "fate bias". These data demonstrate plasticity in how Müller glia can convert to a stem-like state and context-specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.

2.
PLoS Genet ; 20(4): e1011139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669217

RESUMEN

As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.


Asunto(s)
Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Células Ganglionares de la Retina , Proteínas de Pez Cebra , Pez Cebra , Animales , Axones/metabolismo , Axones/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Células Ganglionares de la Retina/metabolismo , Colículos Superiores/metabolismo , Colículos Superiores/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
J Appl Toxicol ; 42(4): 706-714, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34647333

RESUMEN

The increased abuse of novel drugs has created a critical need for cheap and rapid in vivo models to understand whole organism drug-induced toxicity and metabolic impacts. One such model is zebrafish, which share many similarities to human. Assays have been developed for behavioral, toxicity, and metabolism elucidation following chemical exposure. The zebrafish model provides the advantage of assessing these parameters within a single study. Previous zebrafish studies have evaluated the behavioral effects of fentanyl, but not developmental toxicity and its relation to metabolism. In this study, we evaluate the effects of fentanyl on the development of wild-type (TL strain) zebrafish and its metabolism over 4 days. Fertilized eggs were exposed to six concentrations of fentanyl (0.01, 0.1, 1, 10, 50, and 100 µM) through embryo media incubated at 28-29°C. Observations included egg coagulation, somite formation, heartbeat, tail and yolk morphology, pericardial formation, and swim bladder inflation. The incubation media was analyzed for the presence of metabolites using a targeted metabolomics approach. Fentanyl concentration caused significant effects on survival and development, with notable defects to the tail, yolk, and pericardium at 50 and 100 µM. Despropionyl fentanyl (4-ANPP), ß-hydroxy fentanyl, and norfentanyl were detected in zebrafish larvae. We present a single in vivo model to assess toxicity and metabolism of fentanyl exposure in a vertebrate model system. Our findings provide a foundation for further investigations into fentanyl's mechanism of action and translation to human drug exposure.


Asunto(s)
Fentanilo , Pez Cebra , Animales , Embrión no Mamífero , Fentanilo/toxicidad , Larva , Cigoto
4.
Proc Natl Acad Sci U S A ; 114(2): E228-E236, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28003463

RESUMEN

Skeletal muscle contractions are initiated by an increase in Ca2+ released during excitation-contraction (EC) coupling, and defects in EC coupling are associated with human myopathies. EC coupling requires communication between voltage-sensing dihydropyridine receptors (DHPRs) in transverse tubule membrane and Ca2+ release channel ryanodine receptor 1 (RyR1) in the sarcoplasmic reticulum (SR). Stac3 protein (SH3 and cysteine-rich domain 3) is an essential component of the EC coupling apparatus and a mutation in human STAC3 causes the debilitating Native American myopathy (NAM), but the nature of how Stac3 acts on the DHPR and/or RyR1 is unknown. Using electron microscopy, electrophysiology, and dynamic imaging of zebrafish muscle fibers, we find significantly reduced DHPR levels, functionality, and stability in stac3 mutants. Furthermore, stac3NAM myofibers exhibited increased caffeine-induced Ca2+ release across a wide range of concentrations in the absence of altered caffeine sensitivity as well as increased Ca2+ in internal stores, which is consistent with increased SR luminal Ca2+ These findings define critical roles for Stac3 in EC coupling and human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Canales de Calcio Tipo L/fisiología , Fibras Musculares Esqueléticas/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Cafeína/farmacología , Calcio , Embrión no Mamífero , Microscopía Electrónica , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Mutación , Miotonía Congénita , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Methods ; 150: 49-62, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29936090

RESUMEN

Large-scale genomic studies have recently identified genetic variants causative for major neurodevelopmental disorders, such as intellectual disability and autism. However, determining how underlying developmental processes are affected by these mutations remains a significant challenge in the field. Zebrafish is an established model system in developmental neurogenetics that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic and unbiased analysis of gene knock-down and environmental exposure-induced phenotypes in zebrafish. We first present a computational method for brain segmentation based on transgene expression patterns to create a comprehensive neuroanatomical map. This map allowed us to disclose statistically significant changes in brain microstructure and composition in neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene mutations and environmental exposures on neural development, providing an entry point for cellular and molecular analysis of basic developmental processes as well as neurodevelopmental and neurodegenerative disorders.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Microscopía Intravital/métodos , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Mapeo Encefálico/instrumentación , Simulación por Computador , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Embrión no Mamífero , Técnicas de Silenciamiento del Gen , Humanos , Microscopía Intravital/instrumentación , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Morfolinos/genética , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ácido Valproico/toxicidad , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética
6.
BMC Biol ; 15(1): 4, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28122559

RESUMEN

BACKGROUND: Animals use sensory cues to efficiently locate resources, but when sensory information is insufficient, they may rely on internally coded search strategies. Despite the importance of search behavior, there is limited understanding of the underlying neural mechanisms in vertebrates. RESULTS: Here, we report that loss of illumination initiates sophisticated light-search behavior in larval zebrafish. Using three-dimensional tracking, we show that at the onset of darkness larvae swim in a helical trajectory that is spatially restricted in the horizontal plane, before gradually transitioning to an outward movement profile. Local and outward swim patterns display characteristic features of area-restricted and roaming search strategies, differentially enhancing phototaxis to nearby and remote sources of light. Retinal signaling is only required to initiate area-restricted search, implying that photoreceptors within the brain drive the transition to the roaming search state. Supporting this, orthopediaA mutant larvae manifest impaired transition to roaming search, a phenotype which is recapitulated by loss of the non-visual opsin opn4a and somatostatin signaling. CONCLUSION: These findings define distinct neuronal pathways for area-restricted and roaming search behaviors and clarify how internal drives promote goal-directed activity.


Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Locomoción , Células Fotorreceptoras de Vertebrados/metabolismo , Transducción de Señal , Somatostatina/metabolismo , Pez Cebra/metabolismo , Animales , Imagenología Tridimensional , Iluminación , Modelos Biológicos , Neuronas/metabolismo , Retinaldehído/metabolismo , Opsinas de Bastones/metabolismo , Natación
7.
Nucleic Acids Res ; 43(7): e48, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25628360

RESUMEN

Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Western Blotting , Codón , Biología Computacional , Microinyecciones , Datos de Secuencia Molecular , Biosíntesis de Proteínas
8.
Hum Mol Genet ; 23(17): 4651-62, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24760771

RESUMEN

Duchenne muscular dystrophy (DMD) is a common and relentlessly progressive muscle disease. Some interventions have been identified that modestly slow progression and prolong survival, but more meaningful therapies are lacking. The goal of this study is to identify new therapeutic pathways for DMD using a zebrafish model of the disease. To accomplish this, we performed a non-biased drug screen in sapje, a zebrafish line with a recessive nonsense mutation in dystrophin. We identified 6 positive hits (out of 640 total drugs tested) by their ability to prevent abnormal birefringence in sapje. Follow-up analyses demonstrated that fluoxetine, a selective serotonin reuptake inhibitor (SSRI), provided the most substantial benefit. Morpholino-based experimentation confirmed that modulation of the serotonin pathway alone can prevent the dystrophic phenotype, and transcriptomic analysis revealed changes in calcium homeostasis as a potential mechanism. In all, we demonstrate that monoamine agonists can prevent disease in a vertebrate model of DMD. Given the safe and widespread use of SSRIs in clinical practice, our study identifies an attractive target pathway for therapy development.


Asunto(s)
Fluoxetina/uso terapéutico , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Pez Cebra/fisiología , Animales , Secuencia de Bases , Birrefringencia , Calcio/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Distrofina/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Azul de Evans/metabolismo , Fluoxetina/farmacología , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Homeostasis/efectos de los fármacos , Datos de Secuencia Molecular , Morfolinos/farmacología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estrés Mecánico , Análisis de Supervivencia , Pez Cebra/embriología , Pez Cebra/genética
9.
J Neurogenet ; 30(2): 122-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27293113

RESUMEN

Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.


Asunto(s)
Conducta Animal/fisiología , Motivación/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Larva , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
10.
J Neurophysiol ; 112(4): 834-44, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24848468

RESUMEN

Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Tiempo de Reacción , Natación , Animales , Calcio/metabolismo , Characidae , Cyprinidae , Estimulación Eléctrica , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Neuronas/metabolismo , Oryzias , Rombencéfalo/citología , Rombencéfalo/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica , Tetrodotoxina/farmacología , Pez Cebra
11.
Sci Rep ; 14(1): 16533, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019915

RESUMEN

Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.


Asunto(s)
Conducta Animal , Larva , Luz , Pez Cebra , Animales , Pez Cebra/fisiología , Conducta Animal/fisiología , Larva/fisiología , Estimulación Luminosa
12.
Zebrafish ; 20(3): 122-125, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310180

RESUMEN

One of the greatest expenses in running a zebrafish laboratory is the aquatic systems used for housing. These critical pieces of equipment are essential and incorporate components undergoing constant activity in pumping water, monitoring, dosing, and filtration. The systems available on the market are robust, yet ongoing activity eventually leads to the need for repair or replacement. Moreover, some systems are no longer commercially available, impairing the ability to service this critical infrastructure. In this study, we demonstrate a do it yourself (DIY) method to re-engineer an aquatic system's pumps and plumbing, which hybridizes a system no longer commercially available with components used by active vendors. This transition from a two external pump Aquatic Habitat/Pentair design to an individual submerged pump Aquaneering-like plan saves funds by expanding infrastructure longevity. Our hybridized configuration has been in uninterrupted use for >3 years, supporting zebrafish health and high fecundity.


Asunto(s)
Ingeniería Sanitaria , Pez Cebra , Animales , Fertilidad , Laboratorios , Longevidad
13.
Cell Rep ; 42(4): 112287, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952349

RESUMEN

During the visual critical period (CP), sensory experience refines the structure and function of visual circuits. The basis of this plasticity was long thought to be limited to cortical circuits, but recently described thalamic plasticity challenges this dogma and demonstrates greater complexity underlying visual plasticity. Yet how visual experience modulates thalamic neurons or how the thalamus modulates CP timing is incompletely understood. Using a larval zebrafish, thalamus-centric ocular dominance model, we show functional changes in the thalamus and a role of inhibitory signaling to establish CP timing using a combination of functional imaging, optogenetics, and pharmacology. Hemisphere-specific changes in genetically defined thalamic neurons correlate with changes in visuomotor behavior, establishing a role of thalamic plasticity in modulating motor performance. Our work demonstrates that visual plasticity is broadly conserved and that visual experience leads to neuron-level functional changes in the thalamus that require inhibitory signaling to establish critical period timing.


Asunto(s)
Corteza Visual , Pez Cebra , Animales , Corteza Visual/fisiología , Tálamo/fisiología , Período Crítico Psicológico , Neuronas , Plasticidad Neuronal/fisiología
14.
Front Cell Neurosci ; 17: 1247335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034592

RESUMEN

Animal behavior, from simple to complex, is dependent on the faithful wiring of neurons into functional neural circuits. Neural circuits undergo dramatic experience-dependent remodeling during brief developmental windows called critical periods. Environmental experience during critical periods of plasticity produces sustained changes to circuit function and behavior. Precocious critical period closure is linked to autism spectrum disorders, whereas extended synaptic remodeling is thought to underlie circuit dysfunction in schizophrenia. Thus, resolving the mechanisms that instruct critical period timing is important to our understanding of neurodevelopmental disorders. Control of critical period timing is modulated by neuron-intrinsic cues, yet recent data suggest that some determinants are derived from neighboring glial cells (astrocytes, microglia, and oligodendrocytes). As glia make up 50% of the human brain, understanding how these diverse cells communicate with neurons and with each other to sculpt neural plasticity, especially during specialized critical periods, is essential to our fundamental understanding of circuit development and maintenance.

15.
STAR Protoc ; 4(4): 102636, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37837624

RESUMEN

Sensory experience instructs neurodevelopment and refines sensory processing. Here, we describe a minimally invasive protocol to immobilize zebrafish during early development to control visual experience. We describe how to prepare larvae for embedding in agarose at two separate timepoints in development. Then we describe how to build a behavior rig and use software to track zebrafish behaviors. Finally, we detail analyzing behavioral data to validate the protocol and determine outcomes of sensory dependent plasticity. For complete details on the use and execution of this protocol, please refer to Hageter et al. (2023).1.


Asunto(s)
Programas Informáticos , Pez Cebra , Animales , Larva , Sefarosa
16.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993391

RESUMEN

Brain laterality is a prominent feature in Bilateria, where neural functions are favored in a single brain hemisphere. These hemispheric specializations are thought to improve behavioral performance and are commonly observed as sensory or motor asymmetries, such as handedness in humans. Despite its prevalence, our understanding of the neural and molecular substrates instructing functional lateralization is limited. Moreover, how functional lateralization is selected for or modulated throughout evolution is poorly understood. While comparative approaches offer a powerful tool for addressing this question, a major obstacle has been the lack of a conserved asymmetric behavior in genetically tractable organisms. Previously, we described a robust motor asymmetry in larval zebrafish. Following the loss of illumination, individuals show a persistent turning bias that is associated with search pattern behavior with underlying functional lateralization in the thalamus. This behavior permits a simple yet robust assay that can be used to address fundamental principles underlying lateralization in the brain across taxa. Here, we take a comparative approach and show that motor asymmetry is conserved across diverse larval teleost species, which have diverged over the past 200 million years. Using a combination of transgenic tools, ablation, and enucleation, we show that teleosts exhibit two distinct forms of motor asymmetry, vision-dependent and - independent. These asymmetries are directionally uncorrelated, yet dependent on the same subset of thalamic neurons. Lastly, we leverage Astyanax sighted and blind morphs, which show that fish with evolutionarily derived blindness lack both retinal-dependent and -independent motor asymmetries, while their sighted surface conspecifics retained both forms. Our data implicate that overlapping sensory systems and neuronal substrates drive functional lateralization in a vertebrate brain that are likely targets for selective modulation during evolution.

17.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045256

RESUMEN

Many genes are known to regulate retinal regeneration following widespread tissue damage. Conversely, genes controlling regeneration following limited retinal cell loss, akin to disease conditions, are undefined. Combining a novel retinal ganglion cell (RGC) ablation-based glaucoma model, single cell omics, and rapid CRISPR/Cas9-based knockout methods to screen 100 genes, we identified 18 effectors of RGC regeneration kinetics. Surprisingly, 32 of 33 previously known/implicated regulators of retinal tissue regeneration were not required for RGC replacement; 7 knockouts accelerated regeneration, including sox2, olig2, and ascl1a . Mechanistic analyses revealed loss of ascl1a increased "fate bias", the propensity of progenitors to produce RGCs. These data demonstrate plasticity and context-specificity in how genes function to control regeneration, insights that could help to advance disease-tailored therapeutics for replacing lost retinal cells. One sentence summary: We discovered eighteen genes that regulate the regeneration of retinal ganglion cells in zebrafish.

18.
J Neurosci ; 31(32): 11633-44, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832193

RESUMEN

Mutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively, these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses.


Asunto(s)
Alelos , Reacción de Fuga/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPM/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología , Proteínas Serina-Treonina Quinasas , Especificidad de la Especie , Canales Catiónicos TRPM/genética , Tacto/genética , Xenopus , Pez Cebra , Proteínas de Pez Cebra/genética
19.
Commun Biol ; 5(1): 1011, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153373

RESUMEN

The Musashi proteins, MSI1 and MSI2, are conserved RNA binding proteins with a role in the maintenance and renewal of stem cells. Contrasting with this role, terminally differentiated photoreceptor cells express high levels of MSI1 and MSI2, pointing to a role for the two proteins in vision. Combined knockout of Msi1 and Msi2 in mature photoreceptor cells abrogated the retinal response to light and caused photoreceptor cell death. In photoreceptor cells the Musashi proteins perform distinct nuclear and cytoplasmic functions. In the nucleus, the Musashi proteins promote splicing of photoreceptor-specific alternative exons. Surprisingly, conserved photoreceptor-specific alternative exons in genes critical for vision proved to be dispensable, raising questions about the selective pressures that lead to their conservation. In the cytoplasm MSI1 and MSI2 activate protein expression. Loss of Msi1 and Msi2 lead to reduction in the levels of multiple proteins including proteins required for vision and photoreceptor survival. The requirement for MSI1 and MSI2 in terminally differentiated photoreceptors alongside their role in stem cells shows that, depending on cellular context, these two proteins can control processes ranging from cell proliferation to sensory perception.


Asunto(s)
Empalme Alternativo , Proteínas del Tejido Nervioso , Exones/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
Front Behav Neurosci ; 15: 777778, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938167

RESUMEN

Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA