Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903405

RESUMEN

Chalcones are synthetic and naturally occurring compounds that have been widely investigated as anticancer agents. In this work, the effect of chalcones 1-18 against the metabolic viability of cervical (HeLa) and prostate (PC-3 and LNCaP) tumor cell lines was tested, to compare the activity against solid and liquid tumor cells. Their effect was also evaluated on the Jurkat cell line. Chalcone 16 showed the highest inhibitory effect on the metabolic viability of the tested tumor cells and was selected for further studies. Recent antitumor therapies include compounds with the ability to influence immune cells on the tumor microenvironment, with immunotherapy being one actual goal in cancer treatment. Therefore, the effect of chalcone 16 on the expression of mTOR, HIF-1α, IL-1ß, TNF-α, IL-10, and TGF-ß, after THP-1 macrophage stimulation (none, LPS or IL-4), was evaluated. Chalcone 16 significantly increased the expression of mTORC1, IL-1ß, TNF-α, and IL-10 of IL-4 stimulated macrophages (that induces an M2 phenotype). HIF-1α and TGF-ß were not significantly affected. Chalcone 16 also decreased nitric oxide production by the RAW 264.7 murine macrophage cell line, this effect probably being due to an inhibition of iNOS expression. These results suggest that chalcone 16 may influence macrophage polarization, inducing the pro-tumoral M2 macrophages (IL-4 stimulated) to adopt a profile closer to the antitumor M1 profile.


Asunto(s)
Chalcona , Chalconas , Infecciones por Papillomavirus , Masculino , Femenino , Humanos , Ratones , Animales , Chalconas/farmacología , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Próstata , Células Jurkat , Cuello del Útero , Interleucina-4/metabolismo , Macrófagos , Células HeLa , Factor de Crecimiento Transformador beta/metabolismo , Lipopolisacáridos/farmacología
2.
J Comput Chem ; 43(9): 644-653, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35133016

RESUMEN

The calibration of torsional interaction terms by fitting relative gas-phase conformational energies against their quantum-mechanical values is a common procedure in force-field development. However, much less attention has been paid to the optimization of third-neighbor nonbonded interaction parameters, despite their strong coupling with the torsions. This article introduces an algorithm termed LLS-SC, aimed at simultaneously parametrizing torsional and third-neighbor interaction terms based on relative conformational energies. It relies on a self-consistent (SC) procedure where each iteration involves a linear least-squares (LLS) regression followed by a geometry optimization of the reference structures. As a proof-of-principle, this method is applied to obtain torsional and third-neighbor interaction parameters for aliphatic chains in the context of the GROMOS 53A6 united-atom force field. The optimized parameter set is compared to the original one, which has been fitted manually against thermodynamic properties for small linear alkanes. The LLS-SC implementation is freely available under http://github.com/mssm-labmmol/profiler.

3.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054965

RESUMEN

Amine transaminases (ATAs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,ß-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,ß-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results.


Asunto(s)
Aminas/química , Modelos Moleculares , Conformación Molecular , Transaminasas/química , Aminas/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Transaminasas/metabolismo
4.
Chemphyschem ; 22(3): 264-282, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33377305

RESUMEN

Computer simulations of molecular systems enable structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic or supra-molecular level and plays an increasingly important role in chemistry, biology and physics. To interpret the results of such simulations appropriately, the degree of uncertainty and potential errors affecting the calculated properties must be considered. Uncertainty and errors arise from (1) assumptions underlying the molecular model, force field and simulation algorithms, (2) approximations implicit in the interatomic interaction function (force field), or when integrating the equations of motion, (3) the chosen values of the parameters that determine the accuracy of the approximations used, and (4) the nature of the system and the property of interest. In this overview, advantages and shortcomings of assumptions and approximations commonly used when simulating bio-molecular systems are considered. What the developers of bio-molecular force fields and simulation software can do to facilitate and broaden research involving bio-molecular simulations is also discussed.


Asunto(s)
Simulación por Computador , Algoritmos , Simulación de Dinámica Molecular , Teoría Cuántica , Relación Estructura-Actividad , Incertidumbre
5.
J Chem Inf Model ; 61(2): 987-1000, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33502188

RESUMEN

The complexation of quercetin molecules with poly(amidoamine) (PAMAM) dendrimers of generation 0-3 was studied by molecular dynamics simulations. Three main points were addressed: (i) the effect of starting from different initial structures; (ii) the performance of the 2016H66 force field (recently validated in the context of dendrimer simulations) in predicting the experimental drug(quercetin)-loading capacity of PAMAM dendrimers; and (iii) the stability of quercetin-PAMAM complexes and their interactions. Initial structures generated by different restraint protocols led to faster convergence compared to initial structures generated by randomly placing the drug molecules in the simulation box. The simulations yielded meta-stable complexes where the loading numbers have converged to average values and were compared to experimentally obtained values. Once the first meta-stable state was reached, the drug-dendrimer complexes did not deviate significantly throughout the simulation. They were characterized in terms of structural properties, such as the radius of gyration and radial distribution functions. The results suggest that quercetin molecules interact mostly with the internal dendrimer monomers rather than to their surface.


Asunto(s)
Dendrímeros , Preparaciones Farmacéuticas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Quercetina
6.
J Chem Inf Model ; 61(4): 1539-1544, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33819017

RESUMEN

The construction of a molecular topology file is a prerequisite for any classical molecular dynamics simulation. However, the generation of such a file may be very challenging at times, especially for large supramolecules. While many tools are available to provide topologies for large proteins and other biomolecules, the scientific community researching nonbiological systems is not equally well equipped. Here, we present a practical tool to generate topologies for arbitrary supramolecules: The pyPolyBuilder. In addition to linear polymer chains, it also provides the possibility to generate topologies of arbitrary, large, branched molecules, such as, e.g., dendrimers. Furthermore, it also generates reasonable starting structures for simulations of these molecules. pyPolyBuilder is a standalone command-line tool implemented in python. Therefore, it may be easily incorporated in persisting simulation pipelines on any operating systems and with different simulation engines. pyPolyBuilder is freely available on github: https://github.com/mssm-labmmol/pypolybuilder.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Polímeros , Proteínas
7.
Molecules ; 26(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207168

RESUMEN

Xanthone derivatives have shown promising antitumor properties, and 1-carbaldehyde-3,4-dimethoxyxanthone (1) has recently emerged as a potent tumor cell growth inhibitor. In this study, its effect was evaluated (MTT viability assay) against a new panel of cancer cells, namely cervical cancer (HeLa), androgen-sensitive (LNCaP) and androgen-independent (PC-3) prostate cancer, and nonsolid tumor derived cancer (Jurkat) cell lines. The effect of xanthone 1 on macrophage functions was also evaluated. The effect of xanthone 1-conditioned THP-1 human macrophage supernatants on the metabolic viability of cervical and prostate cancer cell lines was determined along with its interference with cytokine expression characteristic of M1 profile (IL-1 ≤ ß; TNF-α) or M2 profile (IL-10; TGF-ß) (PCR and ELISA). Nitric oxide (NO) production by murine RAW264.7 macrophages was quantified by Griess reaction. Xanthone 1 (20 µM) strongly inhibited the metabolic activity of the cell lines and was significantly more active against prostate cell lines compared to HeLa (p < 0.05). Jurkat was the cell most sensitive to the effect of xanthone 1. Compound 1-conditioned IL-4-stimulated THP-1 macrophage supernatants significantly (p < 0.05) inhibited the metabolic activity of HeLa, LNCaP, and PC-3. Xanthone 1 did not significantly affect the expression of cytokines by THP-1 macrophages. The inhibiting effect of compound 1 observed on the production of NO by RAW 264.7 macrophages was moderate. In conclusion, 1-carbaldehyde-3,4-dimethoxyxanthone (1) decreases the metabolic activity of cancer cells and seems to be able to modulate macrophage functions.


Asunto(s)
Antineoplásicos/farmacología , Macrófagos/efectos de los fármacos , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Xantonas/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Células HeLa , Papillomavirus Humano 18/patogenicidad , Humanos , Células Jurkat , Macrófagos/metabolismo , Masculino , Ratones , Óxido Nítrico/metabolismo , Células PC-3 , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Células RAW 264.7 , Células THP-1 , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/virología
8.
Org Biomol Chem ; 18(28): 5420-5426, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32696795

RESUMEN

Methylthiolation reactions are usually explored to access organosulfur compounds using methanethiol, an extremely flammable and toxic compound. Herein, methylthiomethyl esters were successfully applied as novel methylthiolation reagents in a low cost, transition-metal-free methodology. These reagents allowed the methylthiolation of a wide scope of chalcones, acyl ester derivatives and Morita-Baylis-Hillman acetates with good group tolerance, affording the methylthiolated products in moderate to excellent yields. The reaction mechanism was investigated through several control experiments, as well as by theoretical calculations employing Density Functional Theory. The results strongly support that a sulfurane and a sulfonium ylide appear as key intermediates and that a Pummerer type rearrangement is also crucial for the formation of this novel reagent. Furthermore, the methylthiolation mechanism is likely to proceed through the nucleophilic attack of the reagent, followed by an entropically favoured step involving the acetate attack to the positively charged species, then releasing the product.

9.
Chemistry ; 25(72): 16555-16563, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31647594

RESUMEN

A novel methodology for the 1,1-dichlorocyclopropanation of dicarbonyl conjugated olefins was described. The developed protocol is simple and uses readily accessible starting materials, allowing the isolation of the desired adducts in moderate to excellent yields (up to 99 %). Furthermore, the reaction tolerated scale up to the gram scale; thus highlighting the synthetic potential of this transformation. Control experiments and DFT studies revealed that the reaction proceeded through a Michael-initiated ring-closure process, in which reaction temperature played a crucial role. Finally, these gem-dichlorocyclopropanes were also employed in the preparation of a trisubstituted naphthyl derivative and a diastereoselective reduction was also demonstrated.

10.
J Chem Inf Model ; 59(4): 1444-1457, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30875214

RESUMEN

A systematic evaluation of the accuracy of the GROMOS-compatible 2016H66 force field in the simulation of dendrimers is performed. More specifically, the poly(amido amine) (PAMAM) and the poly(propyleneimine) (PPI) are considered because of the availability of experimental data and simulation results in the literature. A total of 36 molecular systems are simulated and the radius of gyration, asphericity, density profiles, and the self-diffusion coefficient are monitored in terms of the generation number and pH (low, medium, and high) condition. Overall, the results support the recommendation of the 2016H66 force field for the simulation of dendrimer systems. The natural building-block based strategy adopted in the definition of 2016H66, together with a careful parametrization of the chemical functional groups to reproduce thermodynamic properties in environments of different polarity, and also the ability to accurately reproduce the expected structural and dynamic features of dendrimers, as shown in the present work, make this force field an attractive option for the simulation of such systems.


Asunto(s)
Dendrímeros/química , Simulación de Dinámica Molecular , Polipropilenos/química , Conformación Molecular
11.
Phys Chem Chem Phys ; 20(34): 21988-21998, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30109317

RESUMEN

The kinetics of trichloroacetic acid (TCA) decarboxylation strongly depends on the solvent in which it occurs, proceeding faster in polar aprotic solvents compared to protic solvents. In particular, the reaction is known to be fast in DMSO even at room temperature and is rather slow in water even at higher temperatures. In order to understand the role of the solvent in the kinetics of TCA decarboxylation, the present study investigates this reaction using both ab initio molecular dynamics (AIMD) simulations in explicit solvents and static electronic structure calculations with the SMD polarizable continuum model, considering DMSO and water as solvents. Both methodologies yield activation free energies in good agreement with experimental data, however they differ with respect to the reaction profile for the process occurring in water. The simulations suggest that DMSO does not participate chemically in the reaction and that the high reaction rate in DMSO can be explained by differential solvation of the reactant and transition state. In water, a protonation step was observed along the simulation trajectory, indicating chemical participation of the solvent in this case. Moreover, the continuum model has shown to be useful to predict the reaction rates in other solvents, suggesting that reaction rates increase upon decreasing solvent polarity up to the point where the apolar solvents are not able to efficiently screen the strong electrostatic interactions to form the required isolated ionic species.

12.
Biochemistry ; 56(25): 3197-3210, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28570817

RESUMEN

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein 1 (MCP-1), is a chemokine that recruits immune cells to inflammatory sites by interacting with G protein-coupled receptor CCR2. The CCL2/CCR2 axis is also involved in pathological processes such as tumor growth and metastasis and hence is currently considered as an important drug target. CCL2 exists in a dynamic monomer-dimer equilibrium that is modulated by CCR2 binding. We used solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to study the interactions between CCL2 and a sulfopeptide corresponding to the N-terminal sequence of CCR2 (CCR218-31). Peptide binding induced the dissociation of CCL2 into monomers, forming stable CCL2/CCR218-31 complexes. NMR relaxation measurements indicated that residues around the CCR218-31 binding site, which are located at the dimer interface, undergo a complex regime of motions. NMR data were used to construct a three-dimensional structural model of the CCL2/CCR218-31 complex, revealing that CCR218-31 occupies a binding site juxtaposed to the dimer interface, partially replacing monomer-monomer contacts, explaining why CCR218-31 binding weakens the dimer interface and induces dissociation. We found that the main interactions governing receptor binding are highly stable salt bridges with conserved chemokine residues as well as hydrophobic interactions. These data provide new insights into the structure-function relationship of the CCL2-CCR2 interaction and may be helpful for the design of novel antichemotactic agents.


Asunto(s)
Quimiocina CCL2/química , Quimiocina CCL2/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Receptores CCR2/química , Receptores CCR2/metabolismo , Sitios de Unión , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Transducción de Señal
13.
Langmuir ; 33(39): 10225-10238, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28832154

RESUMEN

Polyoxyethylene glycol alkyl ether amphiphiles (CiEj) are important nonionic surfactants, often used for biophysical and membrane protein studies. In this work, we extensively test the GROMOS-compatible 2016H66 force field in molecular dynamics simulations involving the lamellar phase of a series of CiEj surfactants, namely C12E2, C12E3, C12E4, C12E5, and C14E4. The simulations reproduce qualitatively well the monitored structural properties and their experimental trends along the surfactant series, although some discrepancies remain, in particular in terms of the area per surfactant, the equilibrium phase of C12E5, and the order parameters of C12E3, C12E4, and C12E5. The polar head of the CiEj surfactants is highly hydrated, almost like a single polyethyleneoxide (PEO) molecule at full hydration, resulting in very compact conformations. Within the bilayer, all CiEj surfactants flip-flop spontaneously within tens of nanoseconds. Water-permeation is facilitated, and the bending rigidity is 4 to 5 times lower than that of typical phospholipid bilayers. In line with another recent theoretical study, the simulations show that the lamellar phase of CiEj contains large hydrophilic pores. These pores should be abundant in order to reproduce the comparatively low NMR order parameters. We show that their contour length is directly correlated to the order parameters, and we estimate that they should occupy approximately 7-10% of the total membrane area. Due to their highly dynamic nature (rapid flip-flops, high water permeability, observed pore formation), CiEj surfactant bilayers are found to represent surprisingly challenging systems in terms of modeling. Given this difficulty, the results presented here show that the 2016H66 parameters, optimized independently considering pure-liquid as well as polar and nonpolar solvation properties of small organic molecules, represent a good starting point for simulating these systems.

14.
J Comput Aided Mol Des ; 31(11): 1009-1019, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29064083

RESUMEN

Diseases caused by flaviviruses, such as dengue and zika, are globally recognized as major threats. During infection, a critical point in their replicative cycle is the maturation step, which occurs throughout the cellular exocytic pathway. This step is a pH-dependent process that involves the modification of the viral envelope by converting prM (pre-membrane) into M (membrane) proteins with the release of a "pr peptide". After this reaction, the pr peptides remain bound to the viral envelope while the virions cross the acidic trans-Golgi network, and are released only at neutral pH after secretion of the virus particles. Despite this current knowledge, the molecular basis of the flavivirus maturation step is largely unknown. Here, based on the crystal structure of the dengue pr-E complex ("pr peptide" bound to virus envelope protein) and using molecular dynamics simulations, we found that the pH shift from acidic to neutral yields considerable structural changes in the system. Dynamic cross correlation maps and root mean square deviation analyses revealed that the pr-E junction is clearly unstable under neutral pH. Secondary structure analysis also revealed that the fusion loop region, present in the E protein, is sensitive to pH and tends to unstructure at a neutral environment. Moreover, we found that five residues present in the E protein, Gly102, His244, Thr70, Thr68 and Asn67 are critical to confer stability to the pr-E complex while inside the Golgi apparatus. This work brings details about the dynamical behavior of the pr-E system, helps to better understand the flavivirus biology and may also be of use in the development of novel antiviral strategies.


Asunto(s)
Virus del Dengue/metabolismo , Simulación de Dinámica Molecular , Proteínas del Envoltorio Viral/química , Virus Zika/metabolismo , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica , Estructura Secundaria de Proteína , Proteínas del Envoltorio Viral/metabolismo
15.
Eur Biophys J ; 45(6): 573-80, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27324799

RESUMEN

The flavivirus non-structural protein 1 (NS1) is a conserved glycoprotein with as yet undefined biological function. This protein dimerizes when inside infected cells or associated to cell membranes but also forms lipid-associated hexamers when secreted to the extracellular space. A single amino acid substitution (P250L) is capable of preventing the dimerization of NS1 resulting in lower virulence and slower virus replication. In this work, based on molecular dynamics simulations of the dengue-2 virus NS1 [Formula: see text]-ladder monomer as a core model, we found that this mutation can induce several conformational changes that importantly affect critical monomer-monomer interactions. Based on additional simulations, we suggest a mechanism by which a highly orchestrated sequence of events propagate the local perturbations around the mutation site towards the dimer interface. The elucidation of such a mechanism could potentially support new strategies for rational production of live-attenuated vaccines and highlights a step forward in the development of novel anti-flavivirus measures.


Asunto(s)
Flavivirus , Simulación de Dinámica Molecular , Mutación , Multimerización de Proteína , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Conformación Proteica en Lámina beta , Estructura Cuaternaria de Proteína
16.
Biofouling ; 32(8): 853-60, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27434592

RESUMEN

Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hidroxibenzoatos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/química , Biomasa , Escherichia coli/metabolismo , Escherichia coli/fisiología , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Peso Molecular , Staphylococcus epidermidis/metabolismo , Staphylococcus epidermidis/fisiología
17.
J Am Chem Soc ; 136(10): 3842-51, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24512648

RESUMEN

A combined strategy based on the computation of absorption energies, using the ZINDO/S semiempirical method, for a statistically relevant number of thermally sampled configurations extracted from QM/MM trajectories is used to establish a one-to-one correspondence between the structures of the different early intermediates (dark, batho, BSI, lumi) involved in the initial steps of the rhodopsin photoactivation mechanism and their optical spectra. A systematic analysis of the results based on a correlation-based feature selection algorithm shows that the origin of the color shifts among these intermediates can be mainly ascribed to alterations in intrinsic properties of the chromophore structure, which are tuned by several residues located in the protein binding pocket. In addition to the expected electrostatic and dipolar effects caused by the charged residues (Glu113, Glu181) and to strong hydrogen bonding with Glu113, other interactions such as π-stacking with Ala117 and Thr118 backbone atoms, van der Waals contacts with Gly114 and Ala292, and CH/π weak interactions with Tyr268, Ala117, Thr118, and Ser186 side chains are found to make non-negligible contributions to the modulation of the color tuning among the different rhodopsin photointermediates.


Asunto(s)
Rodopsina/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Modelos Moleculares , Procesos Fotoquímicos , Espectrofotometría , Electricidad Estática
18.
Eur Biophys J ; 43(10-11): 517-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25150983

RESUMEN

The influence of the cosolutes trehalose and methanol on the structural, dynamic and thermodynamic properties of a glycerol-1-monopalmitate (GMP) bilayer and on its main transition temperature [Formula: see text] is investigated using atomistic molecular dynamics simulations (600 ns) of a GMP bilayer patch (2 × 8 × 8 lipids) at different temperatures in the range of 302 to 338 K and considering three different cosolute concentrations. Depending on the environment and temperature, these simulations present no or a single GL[Formula: see text]LC, LC[Formula: see text]GL or LC[Formula: see text]ID transition, where LC, GL and ID are the liquid crystal, gel and interdigitated phases, respectively. The trehalose molecules form a coating layer at the bilayer surface, promote the hydrogen-bonded bridging of the lipid headgroups, preserve the interaction of the headgroups with trapped water and induce a slight lateral expansion of the bilayer in the LC phase, observations that may have implications for the phenomenon of anhydrobiosis. However, this cosolute does not affect [Formula: see text] and its dependence on hydration in the concentration range considered. On the other hand, methanol molecules intercalate between the lipid headgroups, promote a lateral expansion of the bilayer in the LC phase and induce a concentration dependent decrease of [Formula: see text], observations that may have implications for the phenomenon of anesthesia. The occurrence of an ID phase in the presence of this cosolute may be viewed as an extreme consequence of lateral expansion. The analysis of the simulations also suggests the existence of two basic conservation principles: (1) the hydrogen-bond saturation principle rests on the observation that for all species present in the different systems, the total numbers of hydrogen-bonds per molecule is essentially constant, the only factor of variability being their distribution among different partners; (2) the densest packing principle rests on the observation that the effective volume per methylene group in the interior of the bilayer is only weakly sensitive to the environment, with values comparable to those for liquid (LC) and solid (ID) alkanes, or intermediate (GL).


Asunto(s)
Glicéridos/química , Membrana Dobles de Lípidos/química , Metanol/química , Transición de Fase , Trehalosa/química , Simulación de Dinámica Molecular
19.
J Chem Theory Comput ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36634285

RESUMEN

In the context of classical molecular simulations, the accuracy of a force field is highly influenced by the values of the relevant simulation parameters. In this work, a parameter-space mapping (PSM) workflow is proposed to aid in the calibration of force-field parameters, based mainly on the following features: (i) regular-grid discretization of the search space; (ii) partial sampling of the search-space grid; (iii) training of surrogate models to predict the estimates of the target properties for nonsampled parameter sets; (iv) post hoc interpretation of the results in terms of multiobjective optimization concepts; (v) attenuation of statistical errors achieved via empiric extension of the duration of the simulations; (vi) iterative search-space translation according to a user-defined scalar objective function that measures the accuracy of the force field (e.g., the weighted root-mean-square deviation of the target properties relative to the reference data). This combination of features results in a hybrid of a single- and a multiobjective optimization strategy, allowing for the approximate determination of both a local minimum of the chosen objective function and its neighboring Pareto efficient points. The PSM workflow is implemented in the extensible Python program gmak, which is made available in the Git repository at http://github.com/mssm-labmmol/gmak. Using this implementation, the PSM workflow was tested in a proof-of-concept fashion in the recalibration of the Lennard-Jones parameters of the 3-point Optimal Point Charge (OPC3) water model for compatibility with the GROMOS treatment of nonbonded interactions. The recalibrated model reproduces typical pure-liquid properties with an accuracy similar to the original OPC3 model and represents a significant improvement relative to the Simple Point Charge (SPC) model, which is the official recommendation for simulations using GROMOS force fields.

20.
J Comput Chem ; 33(24): 1907-17, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22648867

RESUMEN

Considering N-methylacetamide (NMA) as a model compound, new interaction parameters are developed for the amide function in the GROMOS force field that are compatible with the recently derived 53A6(OXY) parameter set for oxygen-containing chemical functions. The resulting set, referred to as 53A6(OXY+A) , represents an improvement over earlier GROMOS force-field versions in the context of the pure-liquid properties of NMA, including the density, heat of vaporization, dielectric permittivity, self-diffusion constant and viscosity, as well as in terms of the Gibbs hydration free energy of this molecule. Assuming that NMA represents an adequate model compound for the backbone of peptides, 53A6(OXY+A) may be expected to also provide an improved description of polypeptide chains. As an initial test, simulations are reported for two ß-peptides characterized by very different folding properties in methanol. For these systems, earlier force-field versions provided good agreement with experimental NMR data, and the test shows that the improved description achieved in the context of NMA is not accompanied by any deterioration in the representation of the conformational properties of these peptides.


Asunto(s)
Acetamidas/química , Metanol/química , Péptidos/química , Simulación por Computador , Enlace de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Imitación Molecular , Teoría Cuántica , Termodinámica , Viscosidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA