Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(24): 244801, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322392

RESUMEN

Many upcoming experiments in antimatter research require low-energy antiproton beams. With a kinetic energy in the order of 100 keV, the standard magnetic components to control and focus the beams become less effective. Therefore, electrostatic components are being developed and installed in transfer lines and storage rings. However, there is no equipment available to precisely map and check the electric field generated by these elements. Instead, one has to trust in simulations and, therefore, depend on tight fabrication tolerances. Here we present, for the first time, a noninvasive way to experimentally probe the electrostatic field in a 3D volume with a microsensor. Using the example of an electrostatic quadrupole focusing component, we find excellent agreement between a simulated and real field. Furthermore, it is shown that the spatial resolution of the probe is limited by the electric field curvature which is almost zero for the quadrupole. With a sensor resolution of 61 V/m/sqrt[Hz], the field deviation due to a noncompliance with the tolerances can be resolved. We anticipate that this compact and practical field strength probe will be relevant also for other scientific and technological disciplines such as atmospheric electricity or safeguarding near power infrastructure.

2.
Sensors (Basel) ; 19(3)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691030

RESUMEN

Accurate knowledge of the spatial magnetic field distribution is necessary when measuring field gradients. Therefore, a MEMS magnetic field gradiometer is reported, consisting of two identical, but independent laterally oscillating masses on a single chip. The sensor is actuated by Lorentz force and read out by modulation of the light flux passing through stationary and moving arrays of the chip. This optical readout decouples the transducer from the electronic components. Both phase and intensity are recorded which reveals information about the uniformity of the magnetic field. The magnetic flux density is measured simultaneously at two points in space and the field gradient is evaluated locally. The sensor was characterised at ambient pressure by performing frequency and magnitude response measurements with coil and various different permanent magnet arrangements, resulting in a responsivity of 35.67 V/T and detection limit of 3.07 µT/ Hz (@ 83 Hz ENBW). The sensor is compact, offers a large dynamic measurement range and can be of low-cost by using conventional MEMS batch fabrication technology.

3.
Nat Electron ; 1: 68-73, 2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29485145

RESUMEN

Small-scale and distortion-free measurement of electric fields is crucial for applications such as surveying atmospheric electrostatic fields, lightning research, and safeguarding areas close to high-voltage power lines. A variety of measurement systems exist, the most common of which are field mills, which work by picking up the differential voltage of the measurement electrodes while periodically shielding them with a grounded electrode. However, all current approaches are either bulky, suffer from a strong temperature dependency, or severely distort the electric field requiring a well-defined surrounding and complex calibration procedures. Here we show that microelectromechanical system (MEMS) devices can be used to measure electric field strength without significant field distortion. The purely passive MEMS devices exploit the effect of electrostatic induction, which is used to generate internal forces that are converted into an optically tracked mechanical displacement of a spring-suspended seismic mass. The devices exhibit resolutions on the order of [Formula: see text] with a measurement range of up to tens of kilovolt per metre in the quasi-static regime (≲ 300 Hz).We also show that it should be possible to achieve resolutions of around [Formula: see text] by fine-tuning of the sensor embodiment. These MEMS devices are compact and could easily be mass produced for wide application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA