Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33743211

RESUMEN

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Asunto(s)
Interacciones Huésped-Patógeno , ARN Viral/genética , SARS-CoV-2/genética , Animales , COVID-19/virología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Genoma Viral , Humanos , Pulmón/virología , Masculino , Espectrometría de Masas , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/ultraestructura , Células Vero
2.
Cell ; 175(4): 1088-1104.e23, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318146

RESUMEN

Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Mitocondrias/metabolismo , Síndrome de Williams/genética , Animales , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Femenino , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa
3.
Cell ; 166(5): 1247-1256.e4, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565347

RESUMEN

Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.


Asunto(s)
Encefalopatías/virología , Encéfalo/virología , Retardo del Crecimiento Fetal/virología , Complicaciones Infecciosas del Embarazo/virología , Vagina/virología , Replicación Viral , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Aborto Habitual/virología , Animales , Encefalopatías/inmunología , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/inmunología , Factor 3 Regulador del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Receptor de Interferón alfa y beta/genética
4.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518562

RESUMEN

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transducción de Señal , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Barrera Hematoencefálica , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Homeostasis , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
5.
Cell ; 165(2): 434-448, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26997484

RESUMEN

Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Potasio Shaw/metabolismo , Ataxias Espinocerebelosas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Canales de Potasio Shaw/química , Canales de Potasio Shaw/genética , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo
6.
Cell ; 163(1): 26-7, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406366

RESUMEN

Zeng et al. reveal that the lipolytic effect of the hormone leptin is mediated by sympathetic nerve fibers that directly "envelope" white adipocytes. Local activation of the sympathetic input to the fat opens new venues to circumvent central leptin resistance in obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Leptina/metabolismo , Lipólisis , Animales , Humanos
7.
Cell ; 163(3): 560-9, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496603

RESUMEN

Generation, transformation, and utilization of organic molecules in support of cellular differentiation, growth, and maintenance are basic tenets that define life. In eukaryotes, mitochondrial oxygen consumption plays a central role in these processes. During the process of oxidative phosphorylation, mitochondria utilize oxygen to generate ATP from organic fuel molecules but in the process also produce reactive oxygen species (ROS). While ROS have long been appreciated for their damage-promoting, detrimental effects, there is now a greater understanding of their roles as signaling molecules. Here, we review mitochondrial ROS-mediated signaling pathways with an emphasis on how they are involved in various basal and adaptive physiological responses that control organismal homeostasis.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Ejercicio Físico , Humanos
8.
Cell ; 160(6): 1222-32, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25748653

RESUMEN

The nervous system evolved to coordinate flexible goal-directed behaviors by integrating interoceptive and sensory information. Hypothalamic Agrp neurons are known to be crucial for feeding behavior. Here, however, we show that these neurons also orchestrate other complex behaviors in adult mice. Activation of Agrp neurons in the absence of food triggers foraging and repetitive behaviors, which are reverted by food consumption. These stereotypic behaviors that are triggered by Agrp neurons are coupled with decreased anxiety. NPY5 receptor signaling is necessary to mediate the repetitive behaviors after Agrp neuron activation while having minor effects on feeding. Thus, we have unmasked a functional role for Agrp neurons in controlling repetitive behaviors mediated, at least in part, by neuropeptidergic signaling. The findings reveal a new set of behaviors coupled to the energy homeostasis circuit and suggest potential therapeutic avenues for diseases with stereotypic behaviors.


Asunto(s)
Hipotálamo/fisiología , Neuronas/fisiología , Conducta Estereotipada , Proteína Relacionada con Agouti/metabolismo , Animales , Ansiedad/metabolismo , Conducta Animal/efectos de los fármacos , Capsaicina/administración & dosificación , Conducta Alimentaria/efectos de los fármacos , Femenino , Antagonistas del GABA/administración & dosificación , Hipotálamo/citología , Masculino , Neuronas/clasificación , Conducta Estereotipada/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo
9.
Nature ; 628(8009): 826-834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538787

RESUMEN

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Asunto(s)
Tronco Encefálico , Células Ependimogliales , Conducta Alimentaria , Calor , Hipotálamo , Vías Nerviosas , Neuronas , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Sensación Térmica/fisiología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/líquido cefalorraquídeo , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Nature ; 634(8032): 243-250, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39198648

RESUMEN

Human mutations in neuropeptide Y (NPY) have been linked to high body mass index but not altered dietary patterns1. Here we uncover the mechanism by which NPY in sympathetic neurons2,3 protects from obesity. Imaging of cleared mouse brown and white adipose tissue (BAT and WAT, respectively) established that NPY+ sympathetic axons are a smaller subset that mostly maps to the perivasculature; analysis of single-cell RNA sequencing datasets identified mural cells as the main NPY-responsive cells in adipose tissues. We show that NPY sustains the proliferation of mural cells, which are a source of thermogenic adipocytes in both BAT and WAT4-6. We found that diet-induced obesity leads to neuropathy of NPY+ axons and concomitant depletion of mural cells. This defect was replicated in mice with NPY abrogated from sympathetic neurons. The loss of NPY in sympathetic neurons whitened interscapular BAT, reducing its thermogenic ability and decreasing energy expenditure before the onset of obesity. It also caused adult-onset obesity of mice fed on a regular chow diet and rendered them more susceptible to diet-induced obesity without increasing food consumption. Our results indicate that, relative to central NPY, peripheral NPY produced by sympathetic nerves has the opposite effect on body weight by sustaining energy expenditure independently of food intake.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Neuronas , Neuropéptido Y , Obesidad , Sistema Nervioso Simpático , Termogénesis , Animales , Femenino , Masculino , Ratones , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Axones/metabolismo , Axones/patología , Peso Corporal/fisiología , Proliferación Celular , Conjuntos de Datos como Asunto , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Conducta Alimentaria/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Neuropéptido Y/deficiencia , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Obesidad/patología , Análisis de Expresión Génica de una Sola Célula , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/metabolismo
11.
Cell ; 159(2): 306-17, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303527

RESUMEN

Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here, we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dieta , N-Acetilglucosaminiltransferasas/metabolismo , Neuronas/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Ayuno , Femenino , Ghrelina/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Obesidad/metabolismo , Obesidad/prevención & control
12.
Cell ; 156(3): 495-509, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24462248

RESUMEN

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Asunto(s)
Dieta Alta en Grasa , Hiperglucemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Lactancia , Obesidad/metabolismo , Animales , Axones/metabolismo , Femenino , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Embarazo , Proopiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
13.
Cell ; 155(1): 188-99, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074868

RESUMEN

Mitochondria are key organelles in the maintenance of cellular energy metabolism and integrity. Here, we show that mitochondria number decrease but their size increase in orexigenic agouti-related protein (Agrp) neurons during the transition from fasted to fed to overfed state. These fusion-like dynamic changes were cell-type specific, as they occurred in the opposite direction in anorexigenic pro-opiomelanocortin (POMC) neurons. Interfering with mitochondrial fusion mechanisms in Agrp neurons by cell-selectively knocking down mitofusin 1 (Mfn1) or mitofusin 2 (Mfn2) resulted in altered mitochondria size and density in these cells. Deficiency in mitofusins impaired the electric activity of Agrp neurons during high-fat diet (HFD), an event reversed by cell-selective administration of ATP. Agrp-specific Mfn1 or Mfn2 knockout mice gained less weight when fed a HFD due to decreased fat mass. Overall, our data unmask an important role for mitochondrial dynamics governed by Mfn1 and Mfn2 in Agrp neurons in central regulation of whole-body energy metabolism.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Muerte Celular , Dieta Alta en Grasa , Femenino , GTP Fosfohidrolasas/genética , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Neuronas/citología , Forma de los Orgánulos , Tamaño de los Orgánulos , Caracteres Sexuales
14.
Cell ; 155(1): 172-87, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074867

RESUMEN

Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown. Here, we show that mitochondria-ER contacts in anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus are decreased in diet-induced obesity. POMC-specific ablation of Mfn2 resulted in loss of mitochondria-ER contacts, defective POMC processing, ER stress-induced leptin resistance, hyperphagia, reduced energy expenditure, and obesity. Pharmacological relieve of hypothalamic ER stress reversed these metabolic alterations. Our data establish MFN2 in POMC neurons as an essential regulator of systemic energy balance by fine-tuning the mitochondrial-ER axis homeostasis and function. This previously unrecognized role for MFN2 argues for a crucial involvement in mediating ER stress-induced leptin resistance.


Asunto(s)
Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Animales , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Proopiomelanocortina/metabolismo
15.
Cell ; 155(1): 228-41, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074871

RESUMEN

The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Osteocalcina/metabolismo , Transducción de Señal , Envejecimiento , Animales , Encéfalo/embriología , Encéfalo/fisiología , Femenino , Feto/metabolismo , Ratones , Neurotransmisores/metabolismo , Embarazo
16.
Cell ; 151(5): 934-6, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178116

RESUMEN

The mammalian brain comprises a diverse variety of cell types. Fine characterization of specific subpopulations of neurons, however, has been a technical challenge. Here, Knight et al. describe an elegant technique for high throughput of molecular profiling of activated hypothalamic neurons.

18.
Cell ; 149(6): 1314-26, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682251

RESUMEN

Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. Accordingly, FoxO1 ablation in AgRP neurons of mice results in reduced food intake, leanness, improved glucose homeostasis, and increased sensitivity to insulin and leptin. Expression profiling of flow-sorted FoxO1-deficient AgRP neurons identifies G-protein-coupled receptor Gpr17 as a FoxO1 target whose expression is regulated by nutritional status. Intracerebroventricular injection of Gpr17 agonists induces food intake, whereas Gpr17 antagonist cangrelor curtails it. These effects are absent in Agrp-Foxo1 knockouts, suggesting that pharmacological modulation of this pathway has therapeutic potential to treat obesity.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Ingestión de Alimentos , Factores de Transcripción Forkhead/metabolismo , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Metabolismo Energético , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Glucosa/metabolismo , Leptina/metabolismo , Ratones
19.
Cell ; 146(6): 863-5, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925311

RESUMEN

The drive to eat is controlled by neuronal circuits in the hypothalamus that respond to hormones signaling hunger or satiety. In this issue of Cell, Yang et al. (2011) reveal an AMPK-dependent synaptic pathway that sustains excitatory stimulation of the NPY/AgRP neurons that promote feeding behavior until satiety signals kick in.

20.
Proc Natl Acad Sci U S A ; 120(16): e2300015120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036983

RESUMEN

Anorexia nervosa (AN) is a psychiatric illness with the highest mortality. Current treatment options have been limited to psychotherapy and nutritional support, with low efficacy and high relapse rates. Hypothalamic AgRP (agouti-related peptide) neurons that coexpress AGRP and neuropeptide Y (NPY) play a critical role in driving feeding while also modulating other complex behaviors. We have previously reported that genetic ablation of Tet3, which encodes a member of the TET family dioxygenases, specifically in AgRP neurons in mice, activates these neurons and increases the expression of AGRP, NPY, and the vesicular GABA transporter (VGAT), leading to hyperphagia and anxiolytic effects. Bobcat339 is a synthetic small molecule predicted to bind to the catalytic pockets of TET proteins. Here, we report that Bobcat339 is effective in mitigating AN and anxiety/depressive-like behaviors using a well-established mouse model of activity-based anorexia (ABA). We show that treating mice with Bobcat339 decreases TET3 expression in AgRP neurons and activates these neurons leading to increased feeding, decreased compulsive running, and diminished lethality in the ABA model. Mechanistically, Bobcat339 induces TET3 protein degradation while simultaneously stimulating the expression of AGRP, NPY, and VGAT in a TET3-dependent manner both in mouse and human neuronal cells, demonstrating a conserved, previously unsuspected mode of action of Bobcat339. Our findings suggest that Bobcat339 may potentially be a therapeutic for anorexia nervosa and stress-related disorders.


Asunto(s)
Anorexia Nerviosa , Dioxigenasas , Ratones , Humanos , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Anorexia Nerviosa/tratamiento farmacológico , Anorexia Nerviosa/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo , Modelos Animales , Dioxigenasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA