Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554102

RESUMEN

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Asunto(s)
Bacteriófago lambda , Proteínas de Unión al ADN , Modelos Moleculares , Proteínas Virales , Bacteriófago lambda/genética , Cristalografía por Rayos X , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Multimerización de Proteína , ADN Viral/genética , ADN Viral/metabolismo , Mutación , Lisogenia , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/metabolismo , ADN/química
2.
Nucleic Acids Res ; 51(9): 4467-4487, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36987874

RESUMEN

Type IIS restriction endonucleases contain separate DNA recognition and catalytic domains and cleave their substrates at well-defined distances outside their target sequences. They are employed in biotechnology for a variety of purposes, including the creation of gene-targeting zinc finger and TAL effector nucleases and DNA synthesis applications such as Golden Gate assembly. The most thoroughly studied Type IIS enzyme, FokI, has been shown to require multimerization and engagement with multiple DNA targets for optimal cleavage activity; however, details of how it or similar enzymes forms a DNA-bound reaction complex have not been described at atomic resolution. Here we describe biochemical analyses of DNA cleavage by the Type IIS PaqCI restriction endonuclease and a series of molecular structures in the presence and absence of multiple bound DNA targets. The enzyme displays a similar tetrameric organization of target recognition domains in the absence or presence of bound substrate, with a significant repositioning of endonuclease domains in a trapped DNA-bound complex that is poised to deliver the first of a series of double-strand breaks. PaqCI and FokI share similar structural mechanisms of DNA cleavage, but considerable differences in their domain organization and quaternary architecture, facilitating comparisons between distinct Type IIS enzymes.


Asunto(s)
ADN , Desoxirribonucleasas de Localización Especificada Tipo II , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Especificidad por Sustrato
3.
Mol Microbiol ; 116(4): 1044-1063, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34379857

RESUMEN

The CI and Cro repressors of bacteriophage λ create a bistable switch between lysogenic and lytic growth. In λ lysogens, CI repressor expressed from the PRM promoter blocks expression of the lytic promoters PL and PR to allow stable maintenance of the lysogenic state. When lysogens are induced, CI repressor is inactivated and Cro repressor is expressed from the lytic PR promoter. Cro repressor blocks PRM transcription and CI repressor synthesis to ensure that the lytic state proceeds. RexA and RexB proteins, like CI, are expressed from the PRM promoter in λ lysogens; RexB is also expressed from a second promoter, PLIT , embedded in rexA. Here we show that RexA binds CI repressor and assists the transition from lysogenic to lytic growth, using both intact lysogens and defective prophages with reporter genes under the control of the lytic PL and PR promoters. Once lytic growth begins, if the bistable switch does return to the immune state, RexA expression lessens the probability that it will remain there, thus stabilizing the lytic state and activation of the lytic PL  and PR  promoters. RexB modulates the effect of RexA and may also help establish phage DNA replication as lytic growth ensues.


Asunto(s)
Bacteriófago lambda/fisiología , Replicación del ADN , Lisogenia , Proteínas Represoras/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , ADN Viral , Regulación Viral de la Expresión Génica , Genes Virales , Regiones Promotoras Genéticas , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo
4.
J Biol Chem ; 295(3): 743-756, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31822563

RESUMEN

McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.


Asunto(s)
Metilación de ADN/genética , Enzimas de Restricción del ADN/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Conformación Proteica , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Análisis Mutacional de ADN , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Unión Proteica/genética , Dominios Proteicos/genética , ARN/química , ARN/genética , Especificidad por Sustrato , Thermococcus
5.
Nucleic Acids Res ; 47(17): 9448-9463, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31400118

RESUMEN

Overcoming lysogenization defect (OLD) proteins constitute a family of uncharacterized nucleases present in bacteria, archaea, and some viruses. These enzymes contain an N-terminal ATPase domain and a C-terminal Toprim domain common amongst replication, recombination, and repair proteins. The in vivo activities of OLD proteins remain poorly understood and no definitive structural information exists. Here we identify and define two classes of OLD proteins based on differences in gene neighborhood and amino acid sequence conservation and present the crystal structures of the catalytic C-terminal regions from the Burkholderia pseudomallei and Xanthamonas campestris p.v. campestris Class 2 OLD proteins at 2.24 Å and 1.86 Å resolution respectively. The structures reveal a two-domain architecture containing a Toprim domain with altered architecture and a unique helical domain. Conserved side chains contributed by both domains coordinate two bound magnesium ions in the active site of B. pseudomallei OLD in a geometry that supports a two-metal catalysis mechanism for cleavage. The spatial organization of these domains additionally suggests a novel mode of DNA binding that is distinct from other Toprim containing proteins. Together, these findings define the fundamental structural properties of the OLD family catalytic core and the underlying mechanism controlling nuclease activity.


Asunto(s)
Burkholderia pseudomallei/química , Dominio Catalítico/genética , Desoxirribonucleasas/ultraestructura , Conformación Proteica , Xanthomonas/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos/genética , Burkholderia pseudomallei/genética , Catálisis , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Evolución Molecular , Lisogenia/genética , Metales/química , Dominios Proteicos/genética , Alineación de Secuencia , Xanthomonas/genética
6.
J Struct Biol ; 211(3): 107572, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652237

RESUMEN

McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Desulfurococcaceae/química , Proteínas de Unión al ARN/química , Proteínas Arqueales/genética , Sitios de Unión , Cristalografía por Rayos X , ADN de Archaea/química , ADN de Archaea/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Dominios Proteicos , Pliegue de Proteína , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
7.
J Biol Chem ; 293(30): 11758-11771, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29895618

RESUMEN

Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.


Asunto(s)
Proteínas Bacterianas/química , Enzimas de Restricción-Modificación del ADN/química , ADN/metabolismo , Helicobacter pylori/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Enzimas de Restricción-Modificación del ADN/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos
8.
Nat Commun ; 13(1): 6368, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289207

RESUMEN

Poleroviruses, enamoviruses, and luteoviruses are icosahedral, positive sense RNA viruses that cause economically important diseases in food and fiber crops. They are transmitted by phloem-feeding aphids in a circulative manner that involves the movement across and within insect tissues. The N-terminal portion of the viral readthrough domain (NRTD) has been implicated as a key determinant of aphid transmission in each of these genera. Here, we report crystal structures of the NRTDs from the poleroviruses turnip yellow virus (TuYV) and potato leafroll virus (PLRV) at 1.53-Å and 2.22-Å resolution, respectively. These adopt a two-domain arrangement with a unique interdigitated topology and form highly conserved dimers that are stabilized by a C-terminal peptide that is critical for proper folding. We demonstrate that the PLRV NRTD can act as an inhibitor of virus transmission and identify NRTD mutant variants that are lethal to aphids. Sequence conservation argues that enamovirus and luteovirus NRTDs will follow the same structural blueprint, which affords a biological approach to block the spread of these agricultural pathogens in a generalizable manner.


Asunto(s)
Áfidos , Luteoviridae , Luteovirus , Animales , Luteoviridae/genética , Luteovirus/genética , Floema , Enfermedades de las Plantas
9.
Nat Commun ; 11(1): 5907, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219217

RESUMEN

McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E. coli McrBC. The McrB hexamers, containing the necessary catalytic machinery for basal GTP hydrolysis, are intrinsically asymmetric. This asymmetry directs McrC binding so that it engages a single active site, where it then uses an arginine/lysine-mediated hydrogen-bonding network to reposition the asparagine in the McrB signature motif for optimal catalytic function. While the two McrBC complexes use different DNA-binding domains, these contribute to the same general GTP-recognition mechanism employed by all G proteins. Asymmetry also induces distinct inter-subunit interactions around the ring, suggesting a coordinated and directional GTP-hydrolysis cycle. Our data provide insights into the conserved molecular mechanisms governing McrB family AAA + motors.


Asunto(s)
Enzimas de Restricción del ADN , GTP Fosfohidrolasas/ultraestructura , Thermococcus , Archaea/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción del ADN/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Thermococcus/metabolismo , Thermococcus/ultraestructura
10.
Protein Sci ; 29(6): 1416-1428, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981262

RESUMEN

Dynamin-superfamily proteins (DSPs) are large self-assembling mechanochemical GTPases that harness GTP hydrolysis to drive membrane remodeling events needed for many cellular processes. Mutation to alanine of a fully conserved lysine within the P-loop of the DSP GTPase domain results in abrogation of GTPase activity. This mutant has been widely used in the context of several DSPs as a dominant-negative to impair DSP-dependent processes. However, the precise deficit of the P-loop K to A mutation remains an open question. Here, we use biophysical, biochemical and structural approaches to characterize this mutant in the context of the endosomal DSP Vps1. We show that the Vps1 P-loop K to A mutant binds nucleotide with an affinity similar to wild type but exhibits defects in the organization of the GTPase active site that explain the lack of hydrolysis. In cells, Vps1 and Dnm1 bearing the P-loop K to A mutation are defective in disassembly. These mutants become trapped in assemblies at the typical site of action of the DSP. This work provides mechanistic insight into the widely-used DSP P-loop K to A mutation and the basis of its dominant-negative effects in the cell.


Asunto(s)
Chaetomium/química , Dinaminas/química , Proteínas Fúngicas/genética , Lisina/genética , Mutación , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Chaetomium/citología , Chaetomium/metabolismo , Dinaminas/clasificación , Dinaminas/genética , Dinaminas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteínas de Transporte Vesicular/clasificación , Proteínas de Transporte Vesicular/genética
11.
J Cell Biol ; 217(10): 3608-3624, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30087125

RESUMEN

Dynamin-related proteins (DRPs) are large multidomain GTPases required for diverse membrane-remodeling events. DRPs self-assemble into helical structures, but how these structures are tailored to their cellular targets remains unclear. We demonstrate that the fungal DRP Vps1 primarily localizes to and functions at the endosomal compartment. We present crystal structures of a Vps1 GTPase-bundle signaling element (BSE) fusion in different nucleotide states to capture GTP hydrolysis intermediates and concomitant conformational changes. Using cryoEM, we determined the structure of full-length GMPPCP-bound Vps1. The Vps1 helix is more open and flexible than that of dynamin. This is due to further opening of the BSEs away from the GTPase domains. A novel interface between adjacent GTPase domains forms in Vps1 instead of the contacts between the BSE and adjacent stalks and GTPase domains as seen in dynamin. Disruption of this interface abolishes Vps1 function in vivo. Hence, Vps1 exhibits a unique helical architecture, highlighting structural flexibilities of DRP self-assembly.


Asunto(s)
Proteínas de Unión al GTP , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA