Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1808(4): 1108-19, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21223946

RESUMEN

Under conditions of environmental stress, the plasma membrane is involved in several regulatory processes to promote cell survival, like maintenance of signaling pathways, cell wall organization and intracellular ion homeostasis. PUN1 encodes a plasma membrane protein localizing to the ergosterol-rich membrane compartment occupied also by the arginine permease Can1. We found that the PUN1 (YLR414c) gene is transcriptionally induced upon metal ion stress. Northern blot analysis of the transcriptional regulation of PUN1 showed that the calcium dependent transcription factor Crz1p is required for PUN1 induction upon heavy metal stress. Here we report that mutants deleted for PUN1 exhibit increased metal ion sensitivity and morphological abnormalities. Microscopical and ultrastructural observations revealed a severe cell wall defect of pun1∆ mutants. By using chemical cross-linking, Blue native electrophoresis, and co-immunoprecipitation we found that Pun1p forms homo-oligomeric protein complexes. We propose that Pun1p is a stress-regulated factor required for cell wall integrity, thereby expanding the functional significance of lateral plasma membrane compartments.


Asunto(s)
Calcineurina/metabolismo , Pared Celular/metabolismo , Proteínas de la Membrana/metabolismo , Metales Pesados/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Northern Blotting , Calcineurina/genética , Membrana Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Iones/farmacología , Proteínas de la Membrana/genética , Microscopía Electrónica , Microscopía Fluorescente , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
PLoS One ; 9(1): e83330, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416162

RESUMEN

Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag(+), Al(3+), As(3+), Cd(2+), Co(2+), Hg(2+), Mn(2+), Ni(2+), V(3+), and Zn(2+), following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism.


Asunto(s)
Metales/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Sitios de Unión/genética , Análisis por Conglomerados , Medios de Cultivo/química , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Genes Fúngicos/genética , Humanos , Iones , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Pruebas de Toxicidad , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
3.
Mol Biol Cell ; 20(3): 1048-57, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19073887

RESUMEN

The conserved Target Of Rapamycin (TOR) growth control signaling pathway is a major regulator of genes required for protein synthesis. The ubiquitous toxic metalloid arsenic, as well as mercury and nickel, are shown here to efficiently inhibit the rapamycin-sensitive TORC1 (TOR complex 1) protein kinase. This rapid inhibition of the TORC1 kinase is demonstrated in vivo by the dephosphorylation and inactivation of its downstream effector, the yeast S6 kinase homolog Sch9. Arsenic, mercury, and nickel cause reduction of transcription of ribosome biogenesis genes, which are under the control of Sfp1, a TORC1-regulated transcriptional activator. We report that arsenic stress deactivates Sfp1 as it becomes dephosphorylated, dissociates from chromatin, and exits the nucleus. Curiously, whereas loss of SFP1 function leads to increased arsenic resistance, absence of TOR1 or SCH9 has the opposite effect suggesting that TORC1 has a role beyond down-regulation of Sfp1. Indeed, we show that arsenic activates the transcription factors Msn2 and Msn4 both of which are targets of TORC1 and protein kinase A (PKA). In contrast to TORC1, PKA activity is not repressed during acute arsenic stress. A normal level of PKA activity might serve to dampen the stress response since hyperactive Msn2 will decrease arsenic tolerance. Thus arsenic toxicity in yeast might be determined by the balance between chronic activation of general stress factors in combination with lowered TORC1 kinase activity.


Asunto(s)
Arsénico/toxicidad , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico/efectos de los fármacos , Secuencia de Bases , Cromatina/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA