Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Fish Shellfish Immunol ; 148: 109495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461876

RESUMEN

Ube3a is a member of the E3 ubiquitin ligase HECTc family, and its role has been established in neurodevelopmental disorders. However, studies on its role in Japanese flounder are scarce. Thus, in this study, the ube3a of Japanese flounder was cloned, and its role in conferring resistance against Chinook salmon bafnivirus (CSBV) was analyzed. Japanese flounder ube3a encoded a protein containing 834 amino acids. Interestingly, its homology with the Atlantic halibut was determined to be 94%. In addition, there were differential expressions of ube3a in different tissues of Japanese flounder, with the highest expression level observed in the fin, followed by the gills and skin (P ≤ 0.05). Subcellular localization analysis revealed that Ube3a is a cytoplasmic protein. We established an in vitro CSBV infection model using Japanese flounder gill cell line (FG). After ube3a overexpression, the viral load was significantly lower than that of the control group (P ≤ 0.05). Contrastingly, after incubation of FG cells with an E3 ubiquitin ligase inhibitor, the viral load was significantly higher than in the control group (P ≤ 0.01). Then, the expression levels of nf-κb, traf3, and tnf-α after incubation with an E3 ubiquitin ligase inhibitor were examined. The results demonstrated that ube3a may exerted a significant antiviral effect in Japanese flounder via the ubiquitination pathway.


Asunto(s)
Lenguado , Animales , Lenguado/genética , Inmunidad Innata/genética , Factor de Necrosis Tumoral alfa/genética , Línea Celular , Ubiquitina-Proteína Ligasas/genética , Filogenia
2.
Fish Shellfish Immunol ; 142: 109150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838208

RESUMEN

Slc2a6 is a member of the slc2 family (solute carrier 2 family) and previous reports have indicated its involvement in the inflammatory response. Slc2a6 is regulated by the NF-ĸB signaling pathway. This study investigated the differential expression of slc2a6 in the early embryonic development of Japanese flounder, revealing that the early gastrula stage had the highest level of slc2a6 expression. Moreover, slc2a6 expression was increased in vitro after stimulation by lymphocystis disease virus (LCDV), and in vivo experiments also showed significantly elevated levels in the spleen and muscle tissues following LCDV stimulation. Subcellular localization revealed that Slc2a6 was expressed in both the nucleus and cytoplasm of cells. The pcDNA3.1-slc2a6 overexpression plasmid was successfully constructed; the si-slc2a6 interfering strand was screened and samples were collected. The expression of NF-ĸB signaling pathway-related genes il-1ß, il-6, nf-ĸb, and tnf-α was evaluated in overexpressed, silenced, and LCDV-stimulated samples. The results showed that slc2a6 is involved in viral regulation in Japanese flounder by regulating innate immune responses.


Asunto(s)
Enfermedades de los Peces , Lenguado , Iridoviridae , Virosis , Animales , FN-kappa B/metabolismo , Bazo/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203198

RESUMEN

The Japanese flounder (Paralichthys olivaceus) is a marine fish that undergoes a dramatic postembryonic metamorphosis, with the right eye shifting to the left and its lifestyle transitioning from planktonic to benthic. As the light environment of the habitat changes from bright to dim, its photoreceptor system also undergoes adaptive change. Growth differentiation factor 6a (Gdf6a) is a member of the BMP family, which plays a key role in regulating the dorsal-ventral pattern of the retina and photoreceptor fate, and the differentiation of different photoreceptors is also modulated by a thyroid hormone (TH) binding its receptor (TR). However, the relationship between gdf6a and TH and its role in the regulation of photoreceptors during flounder metamorphosis is still poorly understood. In this study, bioinformatics analysis showed that Gdf6a had a conserved TGFB structural domain and clusters with fishes. The expression analysis showed that the expression of gdf6a was highest in the eye tissue of adult flounder and tended to increase and then decrease during metamorphosis, reaching its highest levels at the peak of metamorphosis. Moreover, the expression of gdf6a increased in the early stages of metamorphosis after exogenous TH treatment, while it was inhibited after exogenous thiourea (a TH inhibitor, TU) treatment. To further investigate the targeting role of TH and gdf6a in the metamorphosis of flounder, the results of the Dual-Luciferase revealed that triiodothyronine (T3) may regulate the expression of gdf6a through TRß. In conclusion, we speculate that TH influences the development of cone photoreceptors during the metamorphosis of the flounder by regulating the expression of gdf6a.


Asunto(s)
Lenguado , Animales , Lenguado/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/farmacología , Triyodotironina , Antitiroideos , Retina
4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958869

RESUMEN

The skin of Trachinotus ovatus is a crucial component of the mucosal immune system and serves as the primary site of infection by Cryptocaryon irritans. In order to investigate the significant role of skin in C. irritans infection, a comprehensive transcriptome analysis was conducted on skin tissues from the infection group, infection-adjacent group, and infection group compared with the infection-adjacent group (ATT_vs_PER, ADJ_vs_PER, ATT_vs_ADJ). This study identified differentially expressed long non-coding RNAs (DE lncRNAs), microRNAs (DE miRNAs), and differentially expressed genes (DEGs). The prediction of lncRNA target genes was accomplished by utilizing positional relationship (co-location) and expression correlation (co-expression) with protein-coding genes. Subsequently, functional enrichment analysis was conducted on the target genes of differentially expressed lncRNAs, revealing their involvement in signaling pathways such as tight junction, MAPK, and cell adhesion molecules. This study describes the regulatory network of lncRNA-miRNA-mRNA in T. ovatus skin tissue infected with C. irritans. Functional prediction analysis showed that differentially expressed lncRNA and miRNA may regulate the expression of immune genes such as interleukin-8 (il8) to resist the infection of C. irritans. Conducting additional research on these non-coding RNAs will facilitate a deeper understanding of their immune regulatory function in T. ovatus during C. irritans infection. The study of non-coding RNA in this study laid a foundation for revealing the molecular mechanism of the immune system of T. ovatus to respond to the infection of C. irritans. It provided a choice for the molecular breeding of Trachinotus ovatus against C. irritans.


Asunto(s)
Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , MicroARNs , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Cilióforos/genética , Transcriptoma , Perfilación de la Expresión Génica , Peces/genética , MicroARNs/genética , Redes Reguladoras de Genes
5.
Fish Shellfish Immunol ; 120: 142-154, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34808358

RESUMEN

Trim25 is a member of Tripartite Motif (TRIM) family. Previous studies report that trim25 modulates antiviral activity by activating RIG-I. In this study we explored the four alternative splicing (AS) variants X1-X4 of Japanese flounder trim25. The sequences of the AS variants were highly conserved. Expression levels of trim25 X1-X4 were increased after 12 h of poly I:C treatment in vitro. In vivo expression of X2-X4 in liver, kidney (except X2) and blood was significantly up-regulated in early stages of poly I:C treatment. Subcellular localization analysis showed that Trim25 X1-X4 were distributed in different cellular organelles. The recombinant vector pcDNA3.1-Trim25 X1-X4 were successfully overexpressed in Flounder cells and the samples were collected. Expression patterns of RIG-I pathway genes dhx58, traf6, traf2, nfkbia and il-8 were explored in vitro and in vivo after poly I:C treatment, as well as overexpressed samples. The findings of this study imply that AS variants of trim25 confer antiviral activity in Japanese flounder by modulating innate immune response.


Asunto(s)
Empalme Alternativo , Proteínas de Peces , Lenguado , Inmunidad Innata , Proteínas de Motivos Tripartitos/genética , Animales , Proteínas de Peces/genética , Lenguado/genética , Lenguado/inmunología , Poli I-C/farmacología
6.
Mol Reprod Dev ; 86(6): 727-737, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31012201

RESUMEN

Double haploidy is an advantageous situation for genetic mapping and genome sequencing studies. In the present study, the hypothalamus and pituitary gland from sterile and fertile double-haploid (DH) Japanese flounders (aged 5 years) were used as experimental materials for studying the expression of genes in individuals with reproductive disorders, using high-throughput sequencing technology. The results revealed abnormal levels of some hormones in sterile DHs during the breeding season. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the significantly different microRNAs and messenger RNAs were related to metabolism, signal transduction, and melanogenesis; those related to steroid hormone synthesis and secretion related pathways were not detected. Our results suggest that the key to sterility in DHs was the arrested ovary development. However, the reason for arrested ovary development was mainly related to the lower levels of expression of genes involved in steroid biosynthesis in gonads, and was not related to the pituitary. For maintaining homeostasis, the hypothalamus and pituitary would have large differences in several processes, including signal transduction, metabolism, and immune response. The present study provides primary data for further studies on sterility in fish, and even in other animals.


Asunto(s)
Lenguado/metabolismo , Regulación de la Expresión Génica , Infertilidad Femenina/metabolismo , MicroARNs/biosíntesis , Hipófisis/metabolismo , ARN Mensajero/biosíntesis , Animales , Femenino
7.
Fish Shellfish Immunol ; 93: 183-190, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31330254

RESUMEN

In mammals, a matricellular protein, thrombospondin 2 (Thbs2) has been reported to play important roles in modulating cell-matrix interactions, vascular integrity and thrombosis formation. However, the role of gene, thbs2 has not yet been studied in teleost. In the present study, this novel fish gene from Japanese flounder was cloned and its function in resistant to lymphocystis disease virus was elucidated. The Japanese flounder thbs2 encoded a 1176-amino acid protein with 91% identity to medaka. Amino acid sequence indicated that Japanese flounder Thbs2 contained 10 typical conserved domains. The thbs2 was expressed in all stages of embryo development, and in hatched larva stage, its expression was significantly higher than that in other stages (P < 0.05). The relative expression level of thbs2 was significantly higher in the head kidney, liver, blood, gill, and heart of the lymphocystis disease virus resistant fish than in sensitive fish (P < 0.05); and in muscle, this difference was at highly significant (P < 0.01). Additionally, the distribution of Thbs2 in tissue was evaluated by immunohistochemical staining. Subcellular localization analysis showed that Thbs2 was distributed throughout the cytoplasm of the cells. Taken together, our results provide new basic data for thbs2 function, especially its role in anti-lymphocystis disease virus immune response.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Trombospondinas/genética , Trombospondinas/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , Filogenia , Alineación de Secuencia/veterinaria , Trombospondinas/química
8.
Nucleic Acids Res ; 45(7): e52, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27980066

RESUMEN

Applications that use Bacterial Artificial Chromosome (BAC) libraries often require paired-end sequences and knowledge of the physical location of each clone in plates. To facilitate obtaining this information in high-throughput, we generated pBACode vectors: a pool of BAC cloning vectors, each with a pair of random barcodes flanking its cloning site. In a pBACode BAC library, the BAC ends and their linked barcodes can be sequenced in bulk. Barcode pairs are determined by sequencing the empty pBACode vectors, which allows BAC ends to be paired according to their barcodes. For physical clone mapping, the barcodes are used as unique markers for their linked genomic sequence. After multi-dimensional pooling of BAC clones, the barcodes are sequenced and deconvoluted to locate each clone. We generated a pBACode library of 94,464 clones for the flounder Paralichthys olivaceus and obtained paired-end sequence from 95.4% of the clones. Incorporating BAC paired-ends into the genome preassembly improved its continuity by over 10-fold. Furthermore, we were able to use the barcodes to map the physical locations of each clone in just 50 pools, with up to 11 808 clones per pool. Our physical clone mapping located 90.2% of BAC clones, enabling targeted characterization of chromosomal rearrangements.


Asunto(s)
Cromosomas Artificiales Bacterianos , Clonación Molecular , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo Físico de Cromosoma/métodos , Análisis de Secuencia de ADN/métodos , Animales , Lenguado/genética , Biblioteca de Genes , Genoma , Saccharomyces cerevisiae/genética
9.
Zygote ; 24(5): 700-6, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26796308

RESUMEN

The effect of hydrostatic pressure treatment on the induction of mitogynogenesis in the eggs of Japanese flounder Paralichthys olivaceus (Temminck et Schlegel) by using heterospecific sperm were studied. Before treatment, the eggs were at metaphase of the first mitosis. The spindle was disassembled by the treatment and then resembled in its pretreatment position, and the chromosomes were rearranged, i.e., the first mitosis was not blocked. During the second mitotic cycle, only a monopolar spindle was assembled in each blastomere and the chromosomes doubled, but cell cleavage was blocked. In the third cycle, mitosis proceeded normally with a bipolar spindle in each blastomere. Flow cytometric analysis of ploidy demonstrated that mitogynogenetic larvae were all diploid. The ultraviolet light-irradiated sperm of the red sea bream (Pagrus major) was condensed, formed a dense chromatin body, and randomly entered one blastomere.


Asunto(s)
Lenguado/genética , Mitosis , Óvulo/fisiología , Animales , Blastómeros/citología , Cromatina , Diploidia , Embrión no Mamífero , Femenino , Lenguado/embriología , Presión Hidrostática , Larva , Masculino , Metafase , Óvulo/citología , Espermatozoides/citología , Espermatozoides/fisiología , Espermatozoides/efectos de la radiación , Rayos Ultravioleta
10.
Biology (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36979089

RESUMEN

In the present study, we investigated the function of thyroid hormones (TH) in visual remodeling during Japanese flounder (Paralichthys olivaceus) metamorphosis through cellular molecular biology experiments. Our results showed that the expression of the five opsin genes of the flounder were highest in eye tissue and varied with the metamorphosis process. The expression of rh1, sws2aß and lws was positively regulated by exogenous TH, but inhibited by thiourea (TU) compared to the control group. In addition, there was a significant increase in sws2aß and lws in the rescue experiments performed with TU-treated larvae (p < 0.05). Meanwhile, T3 levels in flounder larvae were increased by TH and decreased by TU. Based on the differences in the expression of the three isoforms of the thyroid hormone receptor (TR) (Trαa, Trαb and Trß), we further hypothesized that T3 may directly or indirectly regulate the expression of sws2aß through Trαa. This study demonstrates the regulatory role of TH in opsins during flounder metamorphosis and provides a basis for further investigation on the molecular mechanisms underlying the development of the retinal photoreceptor system in flounders.

11.
Biology (Basel) ; 12(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998026

RESUMEN

The roughskin sculpin (Trachidermus fasciatus) is an endangered fish species in China. In recent years, artificial breeding technology has made significant progress, and the population of roughskin sculpin has recovered in the natural environment through enhancement programs and the release of juveniles. However, the effects of released roughskin sculpin on the genetic structure and diversity of wild populations remain unclear. Studies on genetic diversity analysis based on different types and numbers of molecular markers have yielded inconsistent results. In this study, we obtained 2,610,157 high-quality SNPs and 494,698 InDels through whole-genome resequencing of two farmed populations and one wild population. Both farmed populations showed consistent levels of genomic polymorphism and a slight increase in linkage compared with wild populations. The population structure of the two farmed populations was distinct from that of the wild population, but the degree of genetic differentiation was low (overall average Fst = 0.015). Selective sweep analysis showed that 523,529 genes were selected in the two farmed populations, and KEGG enrichment analysis showed that the selected genes were related to amino acid metabolism, which might be caused by artificial feeding. The findings of this study provide valuable additions to the existing genomic resources to help conserve roughskin sculpin populations.

12.
Animals (Basel) ; 13(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37760359

RESUMEN

Tiger puffer fish (Takifugu rubripes) has become the main fish species cultured in China since the last century because of its high economic value. Male and female tiger puffer fish need 2 and 3 years each to reach sexual maturity, which limits the development of breeding research for this species. In recent years, in vitro culture of fish spermatogonial stem cells (SSCs) have shown potential in aquaculture. In the present study, we established a spermatogenic stem cell line from T. rubripes (TrSSCs). TrSSCs were characterized by polygonal morphology, predominantly retained 44 chromosomes, and grew rapidly at 26 °C and in L-15. TrSSCs were still able to grow stably after more than one year of in vitro culture. TrSSCs showed positive alkaline phosphatase staining. TrSSCs expressed germ cell-associated genes, including dnd, ddx4, piwil, gfra1b, sox2, myca, nanog, ly75, and dazl, as determined by semiquantitative assays, and almost all cells were found to express the germ cell genes ddx4 and gfra1b in a fluorescence in situ hybridization assay. In vitro, induction experiments demonstrated the TrSSCs possessed the ability to differentiate into other types of cells. Our research has enriched the fish spermatogonial stem cell resource bank, which will provide an efficient research model for sex determination and sex control breeding in fish, establishing a foundation for subsequent breeding research.

13.
Front Microbiol ; 14: 1178575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333647

RESUMEN

Introduction: Vibriosis causes enormous economic losses of marine fish. The present study investigated the intestinal microbial response to acute infection of half-smooth tongue sole with different-dose Vibrio alginolyticus within 72 h by metagenomic sequencing. Methods: The inoculation amount of V. alginolyticus for the control, low-dose, moderate-dose, and high-dose groups were 0, 8.5 × 101, 8.5 × 104, and 8.5 × 107 cells/g respectively, the infected fish were farmed in an automatic seawater circulation system under a relatively stable temperature, dissolved oxygen and photoperiod, and 3 ~ 6 intestinal samples per group with high-quality DNA assay were used for metagenomics analysis. Results: The acute infections with V. alginolyticus at high, medium, and low doses caused the change of different-type leukocytes at 24 h, whereas the joint action of monocytes and neutrophils to cope with the pathogen infection only occurred in the high-dose group at 72 h. The metagenomic results suggest that a high-dose V. alginolyticus infection can significantly alter the intestinal microbiota, decrease the microbial α-diversity, and increase the bacteria from Vibrio and Shewanella, including various potential pathogens at 24 h. High-abundance species of potential pathogens such as V. harveyii, V. parahaemolyticus, V. cholerae, V. vulnificus, and V. scophthalmi exhibited significant positive correlations with V. alginolyticus. The function analysis revealed that the high-dose inflection group could increase the genes closely related to pathogen infection, involved in cell motility, cell wall/ membrane/envelope biogenesis, material transport and metabolism, and the pathways of quorum sensing, biofilm formation, flagellar assembly, bacterial chemotaxis, virulence factors and antibiotic resistances mainly from Vibrios within 72 h. Discussion: It indicates that the half-smooth tongue sole is highly likely to be a secondary infection with intestinal potential pathogens, especially species from Vibrio and that the disease could become even more complicated because of the accumulation and transfer of antibiotic-resistance genes in intestinal bacteria during the process of V. alginolyticus intensified infection.

14.
Sci Data ; 9(1): 705, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385241

RESUMEN

The Japanese flounder is one of the most economically important marine flatfish. However, due to the increased frequency of extreme weather events and high-density industrial farming, an increasing number of environmental stresses have become severe threats to the healthy development of the Japanese flounder culture industry. Herein, we produced a high-quality chromosome-scale Japanese flounder genome using PacBio Circular Consensus Sequencing technologies. The assembled Japanese flounder genome spanned 588.22 Mb with a contig N50 size of 24.35 Mb. In total, 105.89 Mb of repetitive sequences and 22,565 protein-coding genes were identified by genome annotation. In addition, 67 candidate genes responding to distinct stresses were identified by gene coexpression network analysis based on 16 published stress-related RNA-seq datasets encompassing 198 samples. A high-quality chromosome-scale Japanese flounder genome and candidate stress-related gene set will not only serve as key resources for genomics studies and further research on the underlying stress responsive molecular mechanisms in Japanese flounder but will also advance the progress of genetic improvement and comprehensive stress-resistant molecular breeding of Japanese flounder.


Asunto(s)
Lenguado , Animales , Cromosomas , Lenguado/genética , Redes Reguladoras de Genes , Genoma , Secuencias Repetitivas de Ácidos Nucleicos
15.
Chemosphere ; 303(Pt 1): 134962, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35580645

RESUMEN

Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.


Asunto(s)
Takifugu , Transcriptoma , Animales , Perfilación de la Expresión Génica , Hígado/metabolismo , Takifugu/genética , Takifugu/metabolismo , Tetrodotoxina/metabolismo
16.
Viruses ; 14(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35746687

RESUMEN

A novel nidovirus, CSBV Bces-Po19, was isolated from the marine fish, Japanese flounder (Paralichthys olivaceus). The viral genome was 26,597 nucleotides long and shared 98.62% nucleotide identity with CSBV WHQSR4345. PacBio Sequel and Illumina sequencing were used to perform full-length transcriptome sequencing on CSBV Bces-Po19-sensitive (S) and -resistant (R) Japanese flounder. The results of negative staining revealed bacilliform and spherical virions. There were in total 1444 different genes between CSBV Bces-Po19 S and R groups, with 935 being up-regulated and 513 being down-regulated. Metabolism-, immune-, and RNA-related pathways were significantly enriched. Furthermore, CSBV Bces-Po19 infection induced alternative splicing (AS) events in Japanese flounder; the S group had a higher numbers of AS events (12,352) than the R group (11,452). The number of long non-coding RNA (lncRNA) in the S group, on the other hand, was significantly lower than in the R group. In addition to providing valuable information that sheds more light on CSBV Bces-Po19 infection, these research findings provide further clues for CSBV Bces-Po19 prevention and treatment.


Asunto(s)
Enfermedades de los Peces , Lenguado , Nidovirales , Empalme Alternativo , Animales , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nidovirales/genética , Nidovirales/metabolismo , Transcriptoma
17.
Biology (Basel) ; 11(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36552207

RESUMEN

A new cell line Japanese flounder spleen (JFSP) derived from the spleen of Japanese flounder (Paralichthys olivaceus) was established and characterized in this study. The JFSP cells grew rapidly at 29 °C, and the optimum fetal bovine serum concentration in the L-15 medium was 15%. Cells were subcultured for more than 80 passages. The JFSP cells have a diploid chromosome number of 2n = 68, which differs from the chromosome number of normal diploid Japanese flounder. The established cells were susceptible to Bohle virus (BIV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus (HIRRV), Infectious hematopoietic necrosis virus (IHNV), and Lymphocystis disease virus (LCDV), as evidenced by varying degrees of cytopathic effects (CPE). Replication of the virus in JFSP cells was confirmed by qRT-PCR and transmission electron microscopy. In addition, the expression of four immune-related genes, TRAF3, IL-1ß, TNF-α, and TLR2, was differentially altered following viral infection. The results indicated that the cells underwent an antiviral immune response. JFSP cell line is an ideal tool in vitro for virology. The use of fish cell lines to study the immune genes and immune mechanism of fish and to clarify the immune mechanism of fish has important theoretical significance and practical application value for the fundamental prevention and treatment of fish diseases.

18.
Genes (Basel) ; 12(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680958

RESUMEN

The maternal-to-zygotic transition (MZT) is a crucial event in embryo development. While the features of the MZT across species are shared, the stage of this transition is different among species. We characterized MZT in a flatfish species, Japanese flounder (Paralichthys olivaceus). In this study, we analyzed the 551.57 GB transcriptome data of two types of gametes (sperms and eggs) and 10 embryo developmental stages in Japanese flounder. We identified 2512 maternal factor-related genes and found that most of those maternal factor-related genes expression decreased at the low blastula (LB) stage and remained silent in the subsequent embryonic development period. Meanwhile, we verified that the zygotic genome transcription might occur at the 128-cell stage and large-scale transcription began at the LB stage, which indicates the LB stage is the major wave zygotic genome activation (ZGA) occurs. In addition, we indicated that the Wnt signaling pathway, playing a diverse role in embryonic development, was involved in the ZGA and the axis formation. The results reported the list of the maternal genes in Japanese flounder and defined the stage of MZT, contributing to the understanding of the details of MZT during Japanese flounder embryonic development.


Asunto(s)
Lenguado/genética , Células Germinativas/metabolismo , Transcriptoma , Animales , Blástula/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Lenguado/embriología , Lenguado/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Vía de Señalización Wnt
19.
Animals (Basel) ; 11(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806167

RESUMEN

The liver can synthesize vitellogenin, the precursor of vitellin, which is needed for oocyte development and maturation. Here, we investigated the effects of infertility on liver structure, hormone regulation, and gene and protein networks in Japanese flounder (Paralichthys olivaceus). Results showed that the liver of infertile fish had fewer vacuoles and significantly lower serum vitellogenin (VTG) level than in liver of fertile fish. Whole transcriptomics analysis between infertile and fertile groups identified 2076 significantly differentially expressed (DE) mRNAs, 431 DE lncRNAs, 265 DE circRNAs, and 53 DE miRNAs. Proteomics analysis identified 838 DE proteins. Integrated analysis of whole transcriptomics and proteomics revealed 60 significantly DE genes and proteins associated with metabolism, immunity, signal transduction, and steroid biosynthesis. Moreover, non-coding RNA (miRNAs, circRNA, and lncRNA) transcripts involved in metabolism, immunity, and signal transduction in infertile liver were identified. In conclusion, this study shows that gonadal infertility is associated with not only changes in histological structure and hormone secretion but also changes in metabolism, immunity, and signal transduction networks in the liver. These results provide valuable information concerning the mechanism underlying infertility in fish.

20.
Artículo en Inglés | MEDLINE | ID: mdl-31706977

RESUMEN

Triplophysa yarkandensis, a fish belonging to the family Nemacheilidae, is distributed in the Tarim River, China, immediately north of the Qinghai-Tibet Plateau. Due to increasing salinity and alkalinity in the Tarim River, the habitats of T. yarkandensis have been seriously altered. To identify the genes and pathways that are important for responding to salinity and alkalinity stress, the gill transcriptomes of fish living under different salinity and alkalinity conditions were obtained using RNA sequencing. A total of 1,123,448,964 clean reads were obtained and assembled into 177,271 unigenes, with an average length of 1703 bp. Around 13,526 unigenes showed differential expression when comparing different salinity concentrations with the controls, 6967 of which were upregulated and 6559 were downregulated. When comparing different alkalinity concentrations with the controls, there were 17,475 unigenes that showed differential expression, of which 10,457 were upregulated and 7018 were downregulated. Only 146 unigenes were both differentially expressed in salinity and alkalinity groups compared to the control. The results of KEGG enrichment showed that there were five upregulated and 12 downregulated pathways in fish subject to salinity treatment. For fish exposed to alkalinity treatment, 15 pathways were upregulated and 13 downregulated. There were four upregulated and four downregulated pathways that were shared by fish subject to salinity and alkalinity treatments. To our knowledge, this is the first study on the T. yarkandensis transcriptome; the information presented here will provide further understanding of the fish's response to salinity and alkalinity stress, as well as further insight into the T. yarkandensis genome.


Asunto(s)
Cipriniformes/genética , Transcriptoma , Animales , Cipriniformes/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Salinidad , Estrés Salino , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA