Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pharmacol Res ; 203: 107142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522759

RESUMEN

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.


Asunto(s)
Proteína ADAM17 , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor Notch1 , Sorafenib , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Animales , Receptor Notch1/metabolismo , Receptor Notch1/genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Proteína ADAM17/metabolismo , Proteína ADAM17/antagonistas & inhibidores , Ratones Desnudos , Masculino , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones
2.
Int Immunopharmacol ; 143(Pt 1): 113333, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383785

RESUMEN

BACKGROUND: Histone deacetylase (HDAC) is a potential target for Colorectal Cancer (CRC) molecular target therapy, dehydroharmine derivative ZDLT-1 was designed to inhibit CRC cell proliferation by inhibiting HDAC target. This study aimed to explore the effect of ZDLT-1 could induce apoptosis in CRC in vitro and in vivo, and determine the mechanism of ZDLT-1. METHODS: First, MTT assay, colony formation, wound healing, Transwell assay, Hoechst33342 staining and Annexin V-FITC/PI double staining assay were used to investigate the in vitro effect of ZDLT-1. Second, the toxicity and the anti-tumor effect of ZDLT-1 by subcutaneous tumorigenesis assay were used to determine the in vivo effect of ZDLT-1. In terms of mechanism, we evaluated the effect of ZDLT-1 on HDAC downstream proteins such as HIF-1α, NF-κB, Cleaved-Caspase-3/9, GSDMD and acetylated histone by immunofluorescence and Western blot assessments. RESULTS: This study confirmed that ZDLT-1 had anti-tumor activity by inhibiting cell proliferation in vitro and solid tumor growth in vivo. Furthermore, ZDLT-1 can inhibit CRC cell invasion, migration and apoptosis in vitro. Moreover, ZDLT-1 can promote the expression of apoptosis proteins in HIF-1α/Caspase-3/Caspase-9 pathway and inhibit the expression of tumor-related immune proteins mainly in NF-κB/GSDMD/GSDME pathway. CONCLUSION: ZDLT-1 as HDAC inhibitor could suppresses CRC cell growth in vivo and in vitro by triggering HIF-1α/Caspase-3/Caspase-9 pathway in promoting apoptosis, and triggering NF-κB/GSDMD/GSDME pathway in inhibiting tumor inflammation. Our results propose dehydroharmine derivative ZDLT-1 as a promising therapeutic small molecular agent for CRC.

3.
Eur J Pharmacol ; 983: 176952, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39216745

RESUMEN

BACKGROUND: Inhibiting PI3K/AKT pathway activation may hinder the occurrence and progression of cancer. The aim of this study was to evaluate the efficacy and safety of the PI3K/AKT inhibitors and determine the most appropriate inhibitor for different cancer types. METHODS: Electronic databases up to June 2024 were used to examine the efficacy and safety of PI3K inhibitors (alpelisib, copanlisib, duvelisib, and idelalisib) and AKT inhibitors (capivasertib, ipatasertib and MK-2206) for the treatment of cancer. Data was assessed with a random-effect pairwise and network meta-analysis. Randomized controlled trials and retrospective studies were eligible if they compared PI3K or AKT inhibitors with non-PI3K/AKT controls with no restriction. RESULTS: The results were based on 34 studies from 34 published articles and 6 online registration trials (6710 patients). According to pairwise meta-analysis, PI3K/AKT inhibitors showed to be highly effective, especially for treating mutant cancers, but had poor safety profiles. According to our network meta-analysis, PI3K/AKT inhibitors, especially the AKT inhibitor capivasertib, are effective for treating solid cancers such as breast cancer (BC). Moreover, PI3K inhibitors, especially idelalisib, were effective for treating hematologic cancers such as chronic lymphocytic leukemia (CLL). CONCLUSIONS: The PI3K/AKT inhibitors are effective in patients with genetic mutations. For solid cancers such as BC, capivasertib was efficacy and safety. For hematological cancers represented by CLL, idelalisib was efficacy and safety. The above studies can be used when recommending appropriate targeted therapies for patients with different cancer types.


Asunto(s)
Antineoplásicos , Neoplasias , Metaanálisis en Red , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/efectos adversos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/efectos adversos , Pirimidinas/farmacología , Purinas/uso terapéutico , Purinas/efectos adversos , Purinas/farmacología , Quinazolinonas/uso terapéutico , Quinazolinonas/efectos adversos , Quinazolinonas/farmacología , Resultado del Tratamiento , Fosfatidilinositol 3-Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA