Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(4): 1089-1092, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359260

RESUMEN

A focusing nanostructure with tailored polarization properties based on a metal-dielectric slab waveguide combined with plasmonic slits and gratings is proposed. The polarization state of the focus light can be controlled with overlapping a transverse magnetic (TM) focus and a transverse electric (TE) focus, which are formed by focusing the waveguide modes into free space via grating coupling, extraordinary transmission, and plasmonic beaming. We demonstrated that it is possible to achieve either multiple foci or a single focal spot of the transmitted light with tailored polarization states by judicious design of the structure parameter and the polarization state of the incident light.

2.
Int J Mol Sci ; 16(8): 17933-51, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26247943

RESUMEN

BtuCD-BtuF from Escherichia coli is a binding protein-dependent adenosine triphosphate (ATP)-binding cassette (ABC) transporter system that uses the energy of ATP hydrolysis to transmit vitamin B12 across cellular membranes. Experimental studies have showed that during the transport cycle, the transporter undergoes conformational transitions between the "inward-facing" and "outward-facing" states, which results in the open-closed motions of the cytoplasmic gate of the transport channel. The opening-closing of the channel gate play critical roles for the function of the transporter, which enables the substrate vitamin B12 to be translocated into the cell. In the present work, the extent of opening of the cytoplasmic gate was chosen as a function-related internal coordinate. Then the mean-square fluctuation of the internal coordinate, as well as the cross-correlation between the displacement of the internal coordinate and the movement of each residue in the protein, were calculated based on the normal mode analysis of the elastic network model to analyze the function-related motions encoded in the structure of the system. In addition, the key residues important for the functional motions of the transporter were predicted by using a perturbation method. In order to facilitate the calculations, the internal coordinate was introduced as one of the axes of the coordinate space and the conventional Cartesian coordinate space was transformed into the internal/Cartesian space with linear approximation. All the calculations were carried out in this internal/Cartesian space. Our method can successfully identify the functional motions and key residues for the transporter BtuCD-BtuF, which are well consistent with the experimental observations.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas de Escherichia coli/química , Simulación de Dinámica Molecular , Proteínas de Unión Periplasmáticas/química , Algoritmos , Secuencia de Aminoácidos , Datos de Secuencia Molecular
3.
Nanoscale ; 10(14): 6288-6293, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29577139

RESUMEN

We realized the real-space imaging of Luttinger-liquid plasmons in semiconducting single-walled carbon nanotubes (s-SWCNTs) and studied the effects of chemical-doping-induced charge carrier density modulation on plasmons. Using scattering-type scanning near-field optical microscopy (s-SNOM), we compared the Luttinger-liquid plasmonic behavior in pre- and post-HNO3-doped SWCNTs. Raman measurements revealed that the physical mechanism is P-type doping. Through HNO3 doping, we effectively increased the charge carrier density in s-SWCNTs and achieved quantum plasmons simultaneously with strong confinement (λ0/λp ≈ 70) and high quality factor (Q ≈ 20). The combination of high quality factor and strong subwavelength confinement in Luttinger-liquid plasmons is critical to the future application of plasmonic devices.

4.
J Mol Model ; 22(4): 91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27021210

RESUMEN

The cold shock protein from the hyperthermophile Thermotoga maritima (Tm-Csp) exhibits significantly higher thermostability than its homologue from the thermophile Bacillus caldolyticus (Bc-Csp). Experimental studies have shown that the electrostatic interactions unique to Tm-Csp are responsible for improving its thermostability. In the present work, the favorable charged residues in Tm-Csp were grafted into Bc-Csp by a double point mutation of S48E/N62H, and the impacts of the mutation on the thermostability and unfolding/folding behavior of Bc-Csp were then investigated by using a modified Go model, in which the electrostatic interactions between charged residues were considered in the model. Our simulation results show that this Tm-Csp-like charged residue mutation can effectively improve the thermostability of Bc-Csp without changing its two-state folding mechanism. Besides that, we also studied the unfolding kinetics and unfolding/folding pathway of the wild-type Bc-Csp and its mutant. It is found that this charged residue mutation obviously enhanced the stability of the C-terminal region of Bc-Csp, which decreases the unfolding rate and changes the unfolding/folding pathway of the protein. Our studies indicate that the thermostability, unfolding kinetics and unfolding/folding pathway of Bc-Csp can be artificially changed by introducing Tm-Csp-like favorable electrostatic interactions into Bc-Csp.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Simulación de Dinámica Molecular , Mutación , Thermotoga maritima/química , Secuencia de Aminoácidos , Bacillus/química , Bacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas de Choque Térmico/genética , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Desplegamiento Proteico , Especificidad de la Especie , Electricidad Estática , Thermotoga maritima/metabolismo
5.
Nanoscale ; 3(10): 4114-6, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21931891

RESUMEN

We attempt to provide experimental and theoretical evidence that information of chemical reaction can propagate with plasmonic waveguide along the nanowire and be detected at the remote terminal of nanowire, where the chemical reaction is the surface catalyzed reaction of DMAB produced from PATP assisted by surface plasmon polaritons.


Asunto(s)
Nanocables/química , Catálisis , Plata/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA