Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Nature ; 575(7782): 336-340, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723273

RESUMEN

Organoboron reagents are important synthetic intermediates that have a key role in the construction of natural products, pharmaceuticals and organic materials1. The discovery of simpler, milder and more efficient approaches to organoborons can open additional routes to diverse substances2-5. Here we show a general method for the directed C-H borylation of arenes and heteroarenes without the use of metal catalysts. C7- and C4-borylated indoles are produced by a mild approach that is compatible with a broad range of functional groups. The mechanism, which is established by density functional theory calculations, involves BBr3 acting as both a reagent and a catalyst. The potential utility of this strategy is highlighted by the downstream transformation of the formed boron species into natural products and drug scaffolds.


Asunto(s)
Compuestos de Boro/química , Compuestos de Boro/síntesis química , Boro/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Teoría Funcional de la Densidad , Descubrimiento de Drogas , Indoles/química , Compuestos Organometálicos/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
2.
Nature ; 568(7750): 122-126, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30867595

RESUMEN

Pericyclic reactions are powerful transformations for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. Their role in biosynthesis is increasingly apparent, and mechanisms by which pericyclases can catalyse reactions are of major interest1. [4+2] cycloadditions (Diels-Alder reactions) have been widely used in organic synthesis2 for the formation of six-membered rings and are now well-established in biosynthesis3-6. [6+4] and other 'higher-order' cycloadditions were predicted7 in 1965, and are now increasingly common in the laboratory despite challenges arising from the generation of a highly strained ten-membered ring system8,9. However, although enzyme-catalysed [6+4] cycloadditions have been proposed10-12, they have not been proven to occur. Here we demonstrate a group of enzymes that catalyse a pericyclic [6+4] cycloaddition, which is a crucial step in the biosynthesis of streptoseomycin-type natural products. This type of pericyclase catalyses [6+4] and [4+2] cycloadditions through a single ambimodal transition state, which is consistent with previous proposals11,12. The [6+4] product is transformed to a less stable [4+2] adduct via a facile Cope rearrangement, and the [4+2] adduct is converted into the natural product enzymatically. Crystal structures of three pericyclases, computational simulations of potential energies and molecular dynamics, and site-directed mutagenesis establish the mechanism of this transformation. This work shows how enzymes are able to catalyse concerted pericyclic reactions involving ambimodal transition states.


Asunto(s)
Biocatálisis , Productos Biológicos/química , Productos Biológicos/metabolismo , Reacción de Cicloadición , Enzimas/metabolismo , Lactonas/química , Lactonas/metabolismo , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Enzimas/química , Enzimas/genética , Simulación de Dinámica Molecular , Conformación Proteica , Termodinámica
3.
Bioconjug Chem ; 35(6): 744-749, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38809040

RESUMEN

Bioconjugation of polymers to proteins is a method to impart improved stability and pharmacokinetic properties to biologic systems. However, the precise effects of polymer architecture on the resulting bioconjugates are not well understood. Particularly, cyclic polymers are known to possess unique features such as a decreased hydrodynamic radius when compared to their linear counterparts of the same molecular weight, but have not yet been studied. Here, we report the first bioconjugation of a cyclic polymer, poly(ethylene glycol) (PEG), to a model protein, T4 lysozyme, containing a single engineered cysteine residue (V131C). We compare the stability and activity of this conjugate with those of a linear PEG-T4 lysozyme analogue of similar molecular weight. Furthermore, we used molecular dynamics (MD) simulations to determine the behavior of the polymer-protein conjugates in solution. We introduce cyclic polymer-protein conjugates as potential candidates for the improvement of biologic therapeutics.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa , Polietilenglicoles , Polietilenglicoles/química , Muramidasa/química , Bacteriófago T4/enzimología
4.
Angew Chem Int Ed Engl ; 63(16): e202318377, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38282182

RESUMEN

We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.

5.
Angew Chem Int Ed Engl ; 63(16): e202319960, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375976

RESUMEN

Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.

6.
J Am Chem Soc ; 145(29): 15888-15895, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37441722

RESUMEN

Octafluorocyclopentene (OFCP) engages linear, unprotected peptides in polysubstitution cascades that generate complex fluorinated polycycles. The reactions occur in a single flask at 0-25 °C and require no catalysts or heavy metals. OFCP can directly polycyclize linear sequences using native functionality, or fluorospiroheterocyclic intermediates can be intercepted with exogenous nucleophiles. The latter tactic generates molecular hybrids composed of peptides, sugars, lipids, and heterocyclic components. The platform can create stereoisomers of both single- and double-looped macrocycles. Calculations indicate that the latter can mimic diverse protein surface loops. Subsets of the molecules have low energy conformers that shield the polar surface area through intramolecular hydrogen bonding. A significant fraction of OFCP-derived macrocycles tested show moderate to high passive permeability in parallel artificial membrane permeability assays.


Asunto(s)
Membranas Artificiales , Péptidos , Péptidos/química
7.
J Am Chem Soc ; 145(22): 12324-12332, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232562

RESUMEN

Dearomative photocycloadditions are valuable chemical transformations, serving as an efficient platform to create three-dimensional molecular complexity. However, the photolability of the original addition product especially within the context of ortho cycloadditions often causes undesired consecutive rearrangements, rendering these ortho cycloadducts elusive. Herein, we report an ortho-selective intermolecular photocycloaddition of bicyclic aza-arenes including (iso)quinolines, quinazolines, and quinoxalines by utilizing a strain-release approach. With bicyclo[1.1.0]butanes as coupling partners, this dearomative [2π + 2σ] cycloaddition enables the straightforward construction of C(sp3)-rich bicyclo[2.1.1]hexanes directly connected to N-heteroarenes. Photophysical experiments and DFT calculations revealed the origin of the [2π + 2σ] selectivity and indicate that, in addition to the originally proposed energy transfer or direct excitation pathways, a chain reaction mechanism is operative depending on the reaction conditions.

8.
J Am Chem Soc ; 145(29): 16118-16129, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432783

RESUMEN

We report a highly enantioselective radical-based hydroamination of enol esters with sulfonamides jointly catalyzed by an Ir photocatalyst, Brønsted base, and tetrapeptide thiol. This method is demonstrated for the formation of 23 protected ß-amino-alcohol products, achieving selectivities up to 97:3 er. The stereochemistry of the product is set through selective hydrogen atom transfer from the chiral thiol catalyst to a prochiral C-centered radical. Structure-selectivity relationships derived from structural variation of both the peptide catalyst and olefin substrate provide key insights into the development of an optimal catalyst. Experimental and computational mechanistic studies indicate that hydrogen-bonding, π-π stacking, and London dispersion interactions are contributing factors for substrate recognition and enantioinduction. These findings further the development of radical-based asymmetric catalysis and contribute to the understanding of the noncovalent interactions relevant to such transformations.

9.
Chemistry ; 29(22): e202203029, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36617506

RESUMEN

Herein, we present a highly diastereoselective method to furnish acyclic 3-amino-1,5-diol derivatives using a tandem double-aldol-Tishchenko protocol (dr up to >99 : 1) using a butanone derived sulfinylimine. In most cases only 1 diastereomer predominates, from a possible 16. The reaction is also regioselective. In addition, the highly challenging cyclobutanone and 3-pentanone derivatives are also amenable to a double-aldol-Tishchenko reaction, although the dr values are modest. Despite that, clean single diastereomers can be isolated, which should prove very useful in medicinal chemistry and other areas. Detailed DFT calculations support the observed stereoselectivities in all cases, providing a rationale for the excellent dr values in the butanone series and the moderate values for the 3-pentanone class.

10.
Proc Natl Acad Sci U S A ; 117(40): 24679-24690, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32948694

RESUMEN

Peptidomimetic macrocycles have the potential to regulate challenging therapeutic targets. Structures of this type having precise shapes and drug-like character are particularly coveted, but are relatively difficult to synthesize. Our laboratory has developed robust methods that integrate small-peptide units into designed scaffolds. These methods create macrocycles and embed condensed heterocycles to diversify outcomes and improve pharmacological properties. The hypothetical scope of the methodology is vast and far outpaces the capacity of our experimental format. We now describe a computational rendering of our methodology that creates an in silico three-dimensional library of composite peptidic macrocycles. Our open-source platform, CPMG (Composite Peptide Macrocycle Generator), has algorithmically generated a library of 2,020,794,198 macrocycles that can result from the multistep reaction sequences we have developed. Structures are generated based on predicted site reactivity and filtered on the basis of physical and three-dimensional properties to identify maximally diverse compounds for prioritization. For conformational analyses, we also introduce ConfBuster++, an RDKit port of the open-source software ConfBuster, which allows facile integration with CPMG and ready parallelization for better scalability. Our approach deeply probes ligand space accessible via our synthetic methodology and provides a resource for large-scale virtual screening.

11.
Angew Chem Int Ed Engl ; 62(41): e202307210, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37475575

RESUMEN

Macrocyclic peptides have become increasingly important in the pharmaceutical industry. We present a detailed computational investigation of the reaction mechanism of the recently developed "CyClick" chemistry to selectively form imidazolidinone cyclic peptides from linear peptide aldehydes, without using catalysts or directing groups (Angew. Chem. Int. Ed. 2019, 58, 19073-19080). We conducted computational mechanistic to investigate the effects of intramolecular hydrogen bonds (IMHBs) in promoting a kinetically facile zwitterionic mechanism in "CyClick" of pentapeptide aldehyde AFGPA. Our DFT calculations highlighted the importance of IMHB in pre-organization of the resting state, stabilization of the zwitterion intermediate, and the control of the product stereoselectivity. Furthermore, we have also identified that the low ring strain energy promotes the "CyClick" of hexapeptide aldehyde AAGPFA to form a thermodynamically more stable 15+5 imidazolidinone cyclic peptide product. In contrast, large ring strain energy suppresses "CyClick" reactivity of tetra peptide aldehyde AFPA from forming the 9+5 imidazolidinone cyclic peptide product.


Asunto(s)
Péptidos Cíclicos , Péptidos , Enlace de Hidrógeno , Teoría Funcional de la Densidad
12.
Angew Chem Int Ed Engl ; 62(20): e202210254, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36610039

RESUMEN

In the biosynthesis of the tryptophan-linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high-resolution crystal structure of selective Csp2 -N bond forming dimerase, AspB. Overlay of the AspB structure onto C-C and C-N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C-N bond formation. MD simulations also suggest that intermolecular C-C or C-N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.


Asunto(s)
Dicetopiperazinas , Simulación de Dinámica Molecular , Dicetopiperazinas/química , Conformación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Isomerismo
13.
J Am Chem Soc ; 144(5): 2311-2322, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35100507

RESUMEN

The Carothers equation is often used to predict the utility of a small molecule reaction in a polymerization. In this study, we present the mechanistic study of Pd/Ag cocatalyzed cross dehydrogenative coupling (CDC) polymerization to synthesize a donor-acceptor (D-A) polymer of 3,3'-dihexyl-2,2'-bithiophene and 2,2',3,3',5,5',6,6'-octafluorobiphenyl, which go counter to the Carothers equation. It is uncovered that the second chain extension cross-coupling proceeds much more efficiently than the first cross-coupling and the homocoupling side reaction (at least 1 order of magnitude faster) leading to unexpectedly low homocoupling defects and high molecular weight polymers. Kinetic analyses show that C-H bond activation is rate-determining in the first cross-coupling but not in the second cross-coupling. Based on DFT calculations, the high cross-coupling rate in the second cross-coupling was ascribed to the strong Pd-thiophene interaction in the Pd-mediated C-H bond activation transition state, which decreases the energy barrier of the Pd-mediated C-H bond activation. These results have implications beyond polymerizations and can be used to ease the synthesis of a wide range of molecules where C-H bond activation may be the limiting factor.

14.
J Am Chem Soc ; 144(35): 15938-15943, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36006400

RESUMEN

(+)-Matrine and (+)-isomatrine are tetracyclic alkaloids isolated from the plant Sophora flavescens, the roots of which are used in traditional Chinese medicine. Biosynthetically, these alkaloids are proposed to derive from three molecules of (-)-lysine via the intermediacy of the unstable cyclic imine Δ1-piperidine. Inspired by the biosynthesis, a new dearomative annulation reaction has been developed that leverages pyridine as a stable surrogate for Δ1-piperidine. In this key transformation, two molecules of pyridine are joined with a molecule of glutaryl chloride to give the complete tetracyclic framework of the matrine alkaloids in a single step. Using this dearomative annulation, isomatrine is synthesized in four steps from inexpensive commercially available chemicals. Isomatrine then serves as the precursor to additional lupin alkaloids, including matrine, allomatrine, isosophoridine, and sophoridine.


Asunto(s)
Alcaloides , Sophora , Alcaloides/química , Piperidinas , Piridinas , Quinolizinas/química , Sophora/química , Matrinas
15.
J Am Chem Soc ; 144(49): 22767-22777, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36423331

RESUMEN

There have been significant advancements in radical-mediated reactions through covalent-based organocatalysis. Here, we present the generation of iminyl and amidyl radicals via N-heterocyclic carbene (NHC) catalysis, enabling diastereoselective aminoacylation of trisubstituted alkenes. Different from photoredox catalysis, single electron transfer from the deprotonated Breslow intermediate to O-aryl hydroxylamine generates an NHC-bound ketyl radical, which undergoes diastereocontrolled cross-coupling with the prochiral C-centered radical. This operationally simple method provides a straightforward access to a variety of pyrroline and oxazolidinone heterocycles with vicinal stereocenters (77 examples, up to >19:1 d.r.). Electrochemical studies of the acyl thiazolium salts support our reaction design and highlight the reducing ability of Breslow-type derivatives. A detailed computational analysis of this organocatalytic system suggests that radical-radical coupling is the rate-determining step, in which π-π stacking interaction between the radical intermediates subtly controls the diastereoselectivity.


Asunto(s)
Alquenos , Aminoacilación , Catálisis
16.
Proc Natl Acad Sci U S A ; 116(28): 13970-13976, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235604

RESUMEN

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Lignina/genética , Ingeniería de Proteínas , Pirogalol/análogos & derivados , Sistema Enzimático del Citocromo P-450/química , Lignina/biosíntesis , Lignina/metabolismo , Metilación , Oxidación-Reducción , Oxidorreductasas O-Demetilantes/química , Oxidorreductasas O-Demetilantes/genética , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Pirogalol/química , Pirogalol/metabolismo
17.
Angew Chem Int Ed Engl ; 61(32): e202205878, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670768

RESUMEN

We report asymmetric bioinspired total syntheses of the fungal metabolites emeriones A-C via stereoselective oxidations of two bicyclo[4.2.0]octadiene diastereomers. The central bicyclic scaffolds are prepared in an 8π/6π electrocyclization cascade of a stereodefined pentaene, which contains the fully assembled side chains of the emeriones. The anti-aldol side chain is made using a Paterson-aldol addition, and the epoxide of the dioxabicyclo[3.1.0]hexane side chain via ring-closure onto an oxidized acetal. Our work has enabled the structural revision of emerione C, and resulted in the synthesis of a "missing" family member, which we call emerione D. DFT calculations identified two methyl groups that govern torquoselectivity in the 8π/6π cascade.


Asunto(s)
Estereoisomerismo , Ciclización , Oxidación-Reducción
18.
Angew Chem Int Ed Engl ; 61(12): e202113972, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029844

RESUMEN

The electrochemical generation of vinyl carbocations from alkenyl boronic esters and boronates is reported. Using easy-to-handle nucleophilic fluoride reagents, these intermediates are trapped to form fully substituted vinyl fluorides. Mechanistic studies support the formation of dicoordinated carbocations through sequential single-electron oxidation events. Notably, this electrochemical fluorination features fast reaction times and Lewis acid-free conditions. This transformation provides a complementary method to access vinyl fluorides with simple fluoride salts such as TBAF.

19.
Angew Chem Int Ed Engl ; 61(5): e202112668, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34783121

RESUMEN

Phosphine-mediated deoxygenative nucleophilic substitutions, such as the Mitsunobu reaction, are of great importance in organic synthesis. However, the conventional protocols require stoichiometric oxidants to trigger the formation of the oxyphosphonium intermediates for the subsequent nucleophilic additions. Through dual catalysis of photoredox and cobaloxime, we realized a radical strategy for the catalytic formation of acyloxyphosphonium ions that enables direct amidation. The deoxygenative protocol exhibits a broad scope and has been used in the late-stage amidation of drug molecules. In addition to batch reactions, a continuous-flow reactor was developed, enabling rapid peptide synthesis on gram scale. The successful assembly of a tetrapeptide on the solid support further demonstrated the versatility of this photocatalytic system. Moreover, experimental and computational studies are consistent with the hypothesis of acyloxyphosphonium ions being formed as the key intermediates.

20.
Angew Chem Int Ed Engl ; 61(41): e202208908, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35989224

RESUMEN

We report herein a rare example of enantiodivergent aldehyde addition with ß-alkenyl allylic boronates via chiral Brønsted acid catalysis. 2,6-Di-9-anthracenyl-substituted chiral phosphoric acid-catalyzed asymmetric allylation using ß-vinyl substituted allylic boronate gave alcohols with R absolute configuration. The sense of asymmetric induction of the catalyst in these reactions is opposite to those in prior reports. Moreover, in the presence of the same acid catalyst, the reactions with ß-2-propenyl substituted allylic boronate generated homoallylic alcohol products with S absolute configuration. Unusual substrate-catalyst C-H⋅⋅⋅π interactions in the favoured reaction transition state were identified as the origins of observed enantiodivergence through DFT computational studies.


Asunto(s)
Alcoholes , Aldehídos , Catálisis , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA