Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 33(9-10): 482-497, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842218

RESUMEN

Somatic mutations in the genes encoding components of the spliceosome occur frequently in human neoplasms, including myeloid dysplasias and leukemias, and less often in solid tumors. One of the affected factors, U2AF1, is involved in splice site selection, and the most common change, S34F, alters a conserved nucleic acid-binding domain, recognition of the 3' splice site, and alternative splicing of many mRNAs. However, the role that this mutation plays in oncogenesis is still unknown. Here, we uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. This splicing-independent role of U2AF1 is altered by the S34F mutation, and polysome profiling indicates that the mutation affects translation of hundreds of mRNA. One functional consequence is increased synthesis of the secreted chemokine interleukin 8, which contributes to metastasis, inflammation, and cancer progression in mice and humans.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/fisiopatología , Factor de Empalme U2AF/metabolismo , Línea Celular Tumoral , Citoplasma/patología , Progresión de la Enfermedad , Células HEK293 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Células MCF-7 , Mutación/genética , Neoplasias/genética , Unión Proteica , ARN Mensajero/metabolismo , Factor de Empalme U2AF/genética
2.
Blood ; 141(23): 2813-2823, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36758209

RESUMEN

The European LeukemiaNet recently revised both the clinical (2022) and measurable residual disease testing (2021) guidelines for acute myeloid leukemia (AML). The updated World Health Organization and International Consensus Classification for myeloid neoplasms were also published in 2022. Together, these documents update the classification, risk stratification, prognostication, monitoring recommendations, and response assessment of patients with AML. Increased appreciation of the genetic drivers of AML over the past decade and our increasingly sophisticated understanding of AML biology have been translated into novel therapies and more complex clinical treatment guidelines. Somatic genetic abnormalities and germ line predispositions now define and guide treatment and counseling for the subtypes of this hematologic malignancy. In this How I Treat article, we discuss how we approach AML in daily clinical practice, considering the recent updates in the context of new treatments and discoveries over the past decade.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Neoplasia Residual , Consenso , Genotipo
3.
Haematologica ; 109(2): 401-410, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37534515

RESUMEN

The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials and discrepancies have been observed between different techniques for MRD assessment. In 62 patients with AML, aged 18-60 years, in first complete remission after intensive induction therapy on the randomized phase III SWOG-S0106 clinical trial (clinicaltrials gov. Identifier: NCT00085709), MRD detection by centralized, high-quality multiparametric flow cytometry was compared with a 29-gene panel utilizing duplex sequencing (DS), an ultrasensitive next-generation sequencing method that generates double-stranded consensus sequences to reduce false positive errors. MRD as defined by DS was observed in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs. 13%; hazard ratio [HR] =8.8; 95% confidence interval [CI]: 3.2-24.5; P<0.001) and decreased survival (32% vs. 82%; HR=5.6; 95% CI: 2.3-13.8; P<0.001) at 5 years. DS MRD strongly outperformed multiparametric flow cytometry MRD, which was observed in ten (16%) patients and marginally associated with higher rates of relapse (50% vs. 30%; HR=2.4; 95% CI: 0.9-6.7; P=0.087) and decreased survival (40% vs. 68%; HR=2.5; 95% CI: 1.0-6.3; P=0.059) at 5 years. Furthermore, the prognostic significance of DS MRD status at the time of remission for subsequent relapse was similar on both randomized arms of the trial. These findings suggest that next-generation sequencing-based AML MRD testing is a powerful tool that could be developed for use in patient management and for early anti-leukemic treatment assessment in clinical trials.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Resultado del Tratamiento , Pronóstico , Recurrencia , Neoplasia Residual/diagnóstico , Citometría de Flujo/métodos
4.
Acta Haematol ; 147(2): 133-146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38035547

RESUMEN

BACKGROUND: Measurable residual disease (MRD) test positivity during and after treatment in patients with acute myeloid leukemia (AML) has been associated with higher rates of relapse and worse overall survival. Current approaches for MRD testing are not standardized leading to inconsistent results and poor prognostication of disease. Pertinent studies evaluating AML MRD testing at specific times points, with various therapeutics and testing methods are presented. SUMMARY: AML is a set of diseases with different molecular and cytogenetic characteristics and is often polyclonal with evolution over time. This genetic diversity poses a great challenge for a single AML MRD testing approach. The current ELN 2021 MRD guidelines recommend MRD testing by quantitative polymerase chain reaction in those with a validated molecular target or multiparameter flow cytometry (MFC) in all other cases. The benefit of MFC is the ability to use this method across disease subsets, at the relative expense of suboptimal sensitivity and specificity. AML MRD detection may be improved with molecular methods. Genetic characterization at AML diagnosis and relapse is now standard of care for appropriate therapeutic assignment, and future initiatives will provide the evidence to support testing in remission to direct clinical interventions. KEY MESSAGES: The treatment options for patients with AML have expanded for specific molecular subsets such as FLT3 and IDH1/2 mutated AML, with development of novel agents for NPM1 mutated or KMT2A rearranged AML ongoing, but also due to effective venetoclax-combinations. Evidence regarding highly sensitive molecular MRD detection methods for specific molecular subgroups, in the context of these new treatment approaches, will likely shape the future of AML care.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Recurrencia , Sensibilidad y Especificidad , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Citometría de Flujo/métodos
5.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33108101

RESUMEN

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Inflamación/genética , Mutación Missense , Enzimas Activadoras de Ubiquitina/genética , Edad de Inicio , Anciano , Anciano de 80 o más Años , Citocinas/sangre , Exoma/genética , Genotipo , Arteritis de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Persona de Mediana Edad , Mieloma Múltiple/genética , Síndromes Mielodisplásicos/genética , Poliarteritis Nudosa/genética , Policondritis Recurrente/genética , Análisis de Secuencia de ADN , Síndrome de Sweet/genética , Síndrome
6.
Blood ; 138(26): 2753-2767, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34724563

RESUMEN

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.


Asunto(s)
Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Europa (Continente) , Citometría de Flujo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leucemia Mieloide Aguda/genética , Neoplasia Residual/genética , Pronóstico
7.
Am J Hematol ; 98(12): 1847-1855, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37671649

RESUMEN

With the availability of effective targeted agents, significant changes have occurred in the management of patients with acute myeloid leukemia (AML) over the past several years, particularly for those considered unfit for intensive chemotherapy. While testing for measurable residual disease (MRD) is now routinely performed in patients treated with intensive chemotherapy to refine prognosis and, possibly, inform treatment decision-making, its value in the context of lower-intensity regimens is unclear. As such regimens have gained in popularity and can be associated with higher response rates, the need to better define the role of MRD assessment and the appropriate time points and assays used for this purpose has increased. This report outlines a roadmap for MRD testing in patients with AML treated with lower-intensity regimens. Experts from the European LeukemiaNet (ELN)-DAVID AML MRD working group reviewed all available data to propose a framework for MRD testing in future trials and clinical practice. A Delphi poll served to optimize consensus. Establishment of uniform standards for MRD assessments in lower-intensity regimens used in treating patients with AML is clinically relevant and important for optimizing testing and, ultimately, improving treatment outcomes of these patients.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Pronóstico , Resultado del Tratamiento , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasia Residual/diagnóstico
8.
JAMA ; 329(9): 745-755, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36881031

RESUMEN

Importance: Preventing relapse for adults with acute myeloid leukemia (AML) in first remission is the most common indication for allogeneic hematopoietic cell transplant. The presence of AML measurable residual disease (MRD) has been associated with higher relapse rates, but testing is not standardized. Objective: To determine whether DNA sequencing to identify residual variants in the blood of adults with AML in first remission before allogeneic hematopoietic cell transplant identifies patients at increased risk of relapse and poorer overall survival compared with those without these DNA variants. Design, Setting, and Participants: In this retrospective observational study, DNA sequencing was performed on pretransplant blood from patients aged 18 years or older who had undergone their first allogeneic hematopoietic cell transplant during first remission for AML associated with variants in FLT3, NPM1, IDH1, IDH2, or KIT at 1 of 111 treatment sites from 2013 through 2019. Clinical data were collected, through May 2022, by the Center for International Blood and Marrow Transplant Research. Exposure: Centralized DNA sequencing of banked pretransplant remission blood samples. Main Outcomes and Measures: The primary outcomes were overall survival and relapse. Day of transplant was considered day 0. Hazard ratios were reported using Cox proportional hazards regression models. Results: Of 1075 patients tested, 822 had FLT3 internal tandem duplication (FLT3-ITD) and/or NPM1 mutated AML (median age, 57.1 years, 54% female). Among 371 patients in the discovery cohort, the persistence of NPM1 and/or FLT3-ITD variants in the blood of 64 patients (17.3%) in remission before undergoing transplant was associated with worse outcomes after transplant (2013-2017). Similarly, of the 451 patients in the validation cohort who had undergone transplant in 2018-2019, 78 patients (17.3%) with residual NPM1 and/or FLT3-ITD variants had higher rates of relapse at 3 years (68% vs 21%; difference, 47% [95% CI, 26% to 69%]; HR, 4.32 [95% CI, 2.98 to 6.26]; P < .001) and decreased survival at 3 years (39% vs 63%; difference, -24% [2-sided 95% CI, -39% to -9%]; HR, 2.43 [95% CI, 1.71 to 3.45]; P < .001). Conclusions and Relevance: Among patients with acute myeloid leukemia in first remission prior to allogeneic hematopoietic cell transplant, the persistence of FLT3 internal tandem duplication or NPM1 variants in the blood at an allele fraction of 0.01% or higher was associated with increased relapse and worse survival compared with those without these variants. Further study is needed to determine whether routine DNA-sequencing testing for residual variants can improve outcomes for patients with acute myeloid leukemia.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Neoplasia Residual , Análisis de Secuencia de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/sangre , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Proteínas Nucleares/genética , Cuidados Preoperatorios , Estudios Retrospectivos , Recurrencia , Análisis de Supervivencia
9.
Haematologica ; 107(12): 2810-2822, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453518

RESUMEN

Considerable progress has been made in the past several years in the scientific understanding of, and available treatments for, acute myeloid leukemia (AML). Achievement of a conventional remission, evaluated cytomorphologically via small bone marrow samples, is a necessary but not sufficient step toward cure. It is increasingly appreciated that molecular or immunophenotypic methods to identify and quantify measurable residual disease (MRD) - populations of leukemia cells below the cytomorphological detection limit - provide refined information on the quality of response to treatment and prediction of the risk of AML recurrence and leukemia-related deaths. The principles and practices surrounding MRD remain incompletely determined however and the genetic and immunophenotypic heterogeneity of AML may prevent a one-sizefits- all approach. Here, we review the current approaches to MRD testing in AML, discuss strengths and limitations, highlight recent technological advances that may improve such testing, and summarize ongoing initiatives to generate the clinical evidence needed to advance the use of MRD testing in patients with AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Neoplasia Residual/diagnóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Inmunofenotipificación
10.
Haematologica ; 107(8): 1815-1826, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34587721

RESUMEN

Although cell-free DNA (cfDNA) tests have emerged as a potential non-invasive alternative to bone marrow biopsies for monitoring clonal hematopoiesis in hematologic diseases, whether commercial cfDNA assays can be implemented for the detection and quantification of de novo clonal hematopoiesis in place of blood cells is uncertain. In this study, peripheral plasma cfDNA samples available from patients with aplastic anemia (n=25) or myelodysplastic syndromes (n=27) and a healthy cohort (n=107) were screened for somatic variants in genes related to hematologic malignancies using a Clinical Laboratory Improvement Amendments-certified panel. Results were further compared to DNA sequencing of matched blood cells. In reported results, 85% of healthy subjects, 36% of patients with aplastic anemia and 74% of patients with myelodysplastic syndromes were found to have somatic cfDNA variants, most frequently in DNMT3A, TET2, ASXL1 and SF3B1. However, concordance between cfDNA and blood cell findings was poor for the detection of clonal hematopoiesis when the allele frequency of the variants was <10%, which was mostly observed in the healthy and aplastic anemia cohorts but not in patients with myelodysplastic syndromes. After filtering data for potential artifacts due to low variant allele frequency and sequencing depth, the frequency of clonal hematopoiesis in cfDNA from healthy individuals and patients with aplastic anemia decreased to 52% and 20%, respectively. cfDNA and matched blood cells were not interchangeable for tracking changes in allele burdens as their agreement by Bland-Altman analysis was poor. A commercial cfDNA assay had good performance for de novo detection of clonal hematopoiesis in myelodysplastic syndromes, but showed no advantage over blood cells in diseases with low allele burdens or in healthy individuals.


Asunto(s)
Anemia Aplásica , Ácidos Nucleicos Libres de Células , Síndromes Mielodisplásicos , Anemia Aplásica/diagnóstico , Anemia Aplásica/genética , Ácidos Nucleicos Libres de Células/genética , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Humanos , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética
11.
Proc Natl Acad Sci U S A ; 116(21): 10494-10503, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31064876

RESUMEN

Successful clinical remission to therapy for acute myeloid leukemia (AML) is required for long-term survival to be achieved. Despite trends in improved survival due to better supportive care, up to 40% of patients will have refractory disease, which has a poorly understood biology and carries a dismal prognosis. The development of effective treatment strategies has been hindered by a general lack of knowledge about mechanisms of chemotherapy resistance. Here, through transcriptomic analysis of 154 cases of treatment-naive AML, three chemorefractory patient groups with distinct expression profiles are identified. A classifier, four key refractory gene signatures (RG4), trained based on the expression profile of the highest risk refractory patients, validated in an independent cohort (n = 131), was prognostic for overall survival (OS) and refined an established 17-gene stemness score. Refractory subpopulations have differential expression in pathways involved in cell cycle, transcription, translation, metabolism, and/or stem cell properties. Ex vivo drug sensitivity to 122 small-molecule inhibitors revealed effective group-specific targeting of pathways among these three refractory groups. Gene expression profiling by RNA sequencing had a suboptimal ability to correctly predict those individuals resistant to conventional cytotoxic induction therapy, but could risk-stratify for OS and identify subjects most likely to have superior responses to a specific alternative therapy. Such personalized therapy may be studied prospectively in clinical trials.


Asunto(s)
Resistencia a Antineoplásicos , Quimioterapia de Inducción , Leucemia Mieloide Aguda/tratamiento farmacológico , Adulto , Anciano , Antineoplásicos/uso terapéutico , Estudios de Cohortes , Femenino , Flavonoides/uso terapéutico , Perfilación de la Expresión Génica , Heterogeneidad Genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Proteínas Nucleares/genética , Nucleofosmina , Piperidinas/uso terapéutico , Estados Unidos/epidemiología , Adulto Joven
13.
Br J Haematol ; 188(1): 77-85, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804716

RESUMEN

Acute myeloid leukaemia (AML) is a blood cancer characterized by acquired genetic mutations. There is great interest in accurately establishing measurable residual disease (MRD) burden in AML patients in remission after treatment but at risk of relapse. However, inter- and intrapatient genetic diversity means that, unlike in the chronic myeloid and acute promyelocytic leukaemias, no single genetic abnormality is pathognomonic for all cases of AML MRD. Next-generation sequencing offers the opportunity to test broadly and deeply for potential genetic evidence of residual AML, and while not currently accepted for such use clinically, is likely to be increasingly used for AML MRD testing in the future.


Asunto(s)
Neoplasias Hematológicas , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Promielocítica Aguda , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/terapia , Neoplasia Residual
14.
Blood ; 131(12): 1275-1291, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29330221

RESUMEN

Measurable residual disease (MRD; previously termed minimal residual disease) is an independent, postdiagnosis, prognostic indicator in acute myeloid leukemia (AML) that is important for risk stratification and treatment planning, in conjunction with other well-established clinical, cytogenetic, and molecular data assessed at diagnosis. MRD can be evaluated using a variety of multiparameter flow cytometry and molecular protocols, but, to date, these approaches have not been qualitatively or quantitatively standardized, making their use in clinical practice challenging. The objective of this work was to identify key clinical and scientific issues in the measurement and application of MRD in AML, to achieve consensus on these issues, and to provide guidelines for the current and future use of MRD in clinical practice. The work was accomplished over 2 years, during 4 meetings by a specially designated MRD Working Party of the European LeukemiaNet. The group included 24 faculty with expertise in AML hematopathology, molecular diagnostics, clinical trials, and clinical medicine, from 19 institutions in Europe and the United States.


Asunto(s)
Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Ensayos Clínicos como Asunto , Conferencias de Consenso como Asunto , Europa (Continente) , Guías como Asunto , Humanos , Leucemia Mieloide Aguda/patología , Neoplasia Residual , Pronóstico , Estados Unidos
15.
Am J Hematol ; 95(6): 662-671, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162718

RESUMEN

Older AML patients have low remission rates and poor survival outcomes with standard chemotherapy. Microtransplantation (MST) refers to infusion of allogeneic hematopoietic stem cells without substantial engraftment. MST has been shown to improve clinical outcomes compared with chemotherapy alone. This is the first trial reporting on broad correlative studies to define immunologic mechanisms of action of MST in older AML patients. Older patients with newly diagnosed AML were eligible for enrollment, receiving induction chemotherapy with cytarabine (100 mg/m2) on days 1-7 and idarubicin (12 mg/m2) on days 1-3 (7 + 3). MST was administered 24 hours later. Patients with complete response (CR) were eligible for consolidation with high dose cytarabine (HiDAC) and a second cycle of MST. Responses were evaluated according to standard criteria per NCCN. Immune correlative studies were performed. Sixteen patients were enrolled and received 7 + 3 and MST (median age 73 years). Nine (56%) had high-risk and seven (44%) had standard-risk cytogenetics. Ten episodes of CRS were observed. No cases of GVHD or treatment-related mortality were reported. Event-free survival (EFS) was 50% at 6 months and 19% at 1 year. Overall survival (OS) was 63% at 6 months and 44% at 1 year. Donor microchimerism was not detected. Longitudinal changes were noted in NGS, TCR sequencing, and cytokine assays. Addition of MST to induction and consolidation chemotherapy was well tolerated in older AML patients. Inferior survival outcomes in our study may be attributed to a higher proportion of very elderly patients with high-risk features. Potential immunologic mechanisms of activity of MST include attenuation of inflammatory cytokines and emergence of tumor-specific T cell clones.


Asunto(s)
Citarabina/administración & dosificación , Trasplante de Células Madre Hematopoyéticas , Idarrubicina/administración & dosificación , Quimioterapia de Inducción , Leucemia Mieloide Aguda , Anciano , Aloinjertos , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Proyectos Piloto , Factores de Riesgo
16.
Cancer ; 125(9): 1470-1481, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500073

RESUMEN

BACKGROUND: Phenotypic characterization of immune cells in the bone marrow (BM) of patients with acute myeloid leukemia (AML) is lacking. METHODS: T-cell infiltration was quantified on BM biopsies from 13 patients with AML, and flow cytometry was performed on BM aspirates (BMAs) from 107 patients with AML who received treatment at The University of Texas MD Anderson Cancer Center. The authors evaluated the expression of inhibitory receptors (programmed cell death protein 1 [PD1], cytotoxic T-lymphocyte antigen 4 [CTLA4], lymphocyte-activation gene 3 [LAG3], T-cell immunoglobulin and mucin-domain containing-3 [TIM3]) and stimulatory receptors (glucocorticoid-induced tumor necrosis factor receptor-related protein [GITR], OX40, 41BB [a type 2 transmembrane glycoprotein receptor], inducible T-cell costimulatory [ICOS]) on T-cell subsets and the expression of their ligands (41BBL, B7-1, B7-2, ICOSL, PD-L1, PD-L2, and OX40L) on AML blasts. Expression of these markers was correlated with patient age, karyotype, baseline next-generation sequencing for 28 myeloid-associated genes (including P53), and DNA methylation proteins (DNA methyltransferase 3α, isocitrate dehydrogenase 1[IDH1], IDH2, Tet methylcytosine dioxygenase 2 [TET2], and Fms-related tyrosine kinase 3 [FLT3]). RESULTS: On histochemistry evaluation, the T-cell population in BM appeared to be preserved in patients who had AML compared with healthy donors. The proportion of T-regulatory cells (Tregs) in BMAs was higher in patients with AML than in healthy donors. PD1-positive/OX40-positive T cells were more frequent in AML BMAs, and a higher frequency of PD1-positive/cluster of differentiation 8 (CD8)-positive T cells coexpressed TIM3 or LAG3. PD1-positive/CD8-positive T cells were more frequent in BMAs from patients who had multiply relapsed AML than in BMAs from those who had first relapsed or newly diagnosed AML. Blasts in BMAs from patients who had TP53-mutated AML were more frequently positive for PD-L1. CONCLUSIONS: The preserved T-cell population, the increased frequency of regulatory T cells, and the expression of targetable immune receptors in AML BMAs suggest a role for T-cell-harnessing therapies in AML.


Asunto(s)
Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Infiltración Leucémica/patología , Receptores Inmunológicos/metabolismo , Subgrupos de Linfocitos T/patología , Adulto , Anciano , Médula Ósea/inmunología , Médula Ósea/metabolismo , Médula Ósea/patología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Estudios de Casos y Controles , Femenino , Regulación Leucémica de la Expresión Génica , Genes cdc/inmunología , Humanos , Inmunohistoquímica , Inmunofenotipificación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patología , Infiltración Leucémica/diagnóstico , Infiltración Leucémica/inmunología , Infiltración Leucémica/metabolismo , Ligandos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Fenotipo , Recurrencia , Subgrupos de Linfocitos T/metabolismo
17.
Genet Med ; 21(7): 1594-1602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523342

RESUMEN

PURPOSE: The acquisition of pathogenic variants in the TERT promoter (TERTp) region is a mechanism of tumorigenesis. In nonmalignant diseases, TERTp variants have been reported only in patients with idiopathic pulmonary fibrosis (IPF) due to germline variants in telomere biology genes. METHODS: We screened patients with a broad spectrum of telomeropathies (n = 136), their relatives (n = 52), and controls (n = 195) for TERTp variants using a customized massively parallel amplicon-based sequencing assay. RESULTS: Pathogenic -124 and -146 TERTp variants were identified in nine (7%) unrelated patients diagnosed with IPF (28%) or moderate aplastic anemia (4.6%); five of them also presented cirrhosis. Five (10%) relatives were also found with these variants, all harboring a pathogenic germline variant in telomere biology genes. TERTp clone selection did not associate with peripheral blood counts, telomere length, and response to danazol treatment. However, it was specific for patients with telomeropathies, more frequently co-occurring with TERT germline variants and associated with aging. CONCLUSION: We extend the spectrum of nonmalignant diseases associated with pathogenic TERTp variants to marrow failure and liver disease due to inherited telomerase deficiency. Specificity of pathogenic TERTp variants for telomerase dysfunction may help to assess the pathogenicity of unclear constitutional variants in the telomere diseases.


Asunto(s)
Regiones Promotoras Genéticas , Telomerasa/genética , Telómero/patología , Adolescente , Adulto , Anciano , Anemia Aplásica/genética , Recuento de Células Sanguíneas , Enfermedades de la Médula Ósea/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Fibrosis Pulmonar Idiopática/genética , Hepatopatías/genética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Telomerasa/deficiencia , Adulto Joven
19.
Haematologica ; 104(2): 297-304, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30171026

RESUMEN

Great effort is spent on developing therapies to improve the dire outcomes of those diagnosed with acute myeloid leukemia. The methods for quantifying response to therapeutic intervention have however lacked sensitivity. Patients achieving a complete remission as defined by conventional cytomorphological methods therefore remain at risk of subsequent relapse due to disease persistence. Improved risk stratification is possible based on tests designed to detect this residual leukemic burden (measurable residual disease). However, acute myeloid leukemia is a genetically diverse set of diseases, which has made it difficult to develop a single, highly reproducible, and sensitive assay for measurable residual disease. Here we present the development of a digital targeted RNA-sequencing-based approach designed to overcome these limitations by detecting all newly approved European LeukemiaNet molecular targets for measurable residual disease in acute myeloid leukemia in a single standardized assay. Iterative modifications and novel bioinformatics approaches resulted in a greater than 100-fold increase in performance compared with commercially available targeted RNA-sequencing approaches and a limit of detection as low as one leukemic cell in 100,000 cells measured, which is comparable to quantitative polymerase chain reaction analysis, the current gold standard for the detection of measurable residual disease. This assay, which can be customized and expanded, is the first demonstrated use of high-sensitivity RNA-sequencing for measurable residual disease detection in acute myeloid leukemia and could serve as a broadly applicable standardized tool.


Asunto(s)
Biomarcadores de Tumor , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA