Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(2): 372-381, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27020755

RESUMEN

Protein-coding genes in eukaryotes are transcribed by RNA polymerase II (Pol II) and introns are removed from pre-mRNA by the spliceosome. Understanding the time lag between Pol II progression and splicing could provide mechanistic insights into the regulation of gene expression. Here, we present two single-molecule nascent RNA sequencing methods that directly determine the progress of splicing catalysis as a function of Pol II position. Endogenous genes were analyzed on a global scale in budding yeast. We show that splicing is 50% complete when Pol II is only 45 nt downstream of introns, with the first spliced products observed as introns emerge from Pol II. Perturbations that slow the rate of spliceosome assembly or speed up the rate of transcription caused splicing delays, showing that regulation of both processes determines in vivo splicing profiles. We propose that matched rates streamline the gene expression pathway, while allowing regulation through kinetic competition.


Asunto(s)
Intrones , ARN Polimerasa II/metabolismo , Empalme del ARN , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Cinética , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN/métodos , Empalmosomas/metabolismo
2.
Nat Rev Mol Cell Biol ; 17(5): 322-8, 2016 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-27103327

RESUMEN

Next year will be the 50th anniversary of the discovery of tubulin. To celebrate this discovery, six leaders in the field of microtubule research reflect on key findings and technological breakthroughs over the past five decades, discuss implications for therapeutic applications and provide their thoughts on what questions need to be addressed in the near future.


Asunto(s)
Microtúbulos/fisiología , Tubulina (Proteína)/fisiología , Animales , Biología Celular/historia , Historia del Siglo XX , Humanos , Neoplasias/tratamiento farmacológico , Tubulina (Proteína)/historia , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico
3.
Cell ; 150(5): 1042-54, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939627

RESUMEN

The Drosophila auditory organ shares equivalent transduction mechanisms with vertebrate hair cells, and both are specified by atonal family genes. Using a whole-organ knockout strategy based on atonal, we have identified 274 Drosophila auditory organ genes. Only four of these genes had previously been associated with fly hearing, yet one in five of the genes that we identified has a human cognate that is implicated in hearing disorders. Mutant analysis of 42 genes shows that more than half of them contribute to auditory organ function, with phenotypes including hearing loss, auditory hypersusceptibility, and ringing ears. We not only discover ion channels and motors important for hearing, but also show that auditory stimulus processing involves chemoreceptor proteins as well as phototransducer components. Our findings demonstrate mechanosensory roles for ionotropic receptors and visual rhodopsins and indicate that different sensory modalities utilize common signaling cascades.


Asunto(s)
Drosophila/fisiología , Transducción de Señal , Animales , Dineínas Axonemales/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila/anatomía & histología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Ciliadas Auditivas/metabolismo , Audición/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Rodopsina/genética , Rodopsina/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
4.
Cell ; 147(5): 1092-103, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118464

RESUMEN

Microtubules are dynamic filaments whose ends alternate between periods of slow growth and rapid shortening as they explore intracellular space and move organelles. A key question is how regulatory proteins modulate catastrophe, the conversion from growth to shortening. To study this process, we reconstituted microtubule dynamics in the absence and presence of the kinesin-8 Kip3 and the kinesin-13 MCAK. Surprisingly, we found that, even in the absence of the kinesins, the microtubule catastrophe frequency depends on the age of the microtubule, indicating that catastrophe is a multistep process. Kip3 slowed microtubule growth in a length-dependent manner and increased the rate of aging. In contrast, MCAK eliminated the aging process. Thus, both kinesins are catastrophe factors; Kip3 mediates fine control of microtubule length by narrowing the distribution of maximum lengths prior to catastrophe, whereas MCAK promotes rapid restructuring of the microtubule cytoskeleton by making catastrophe a first-order random process.


Asunto(s)
Fenómenos Fisiológicos Celulares , Cinesinas/metabolismo , Microtúbulos/metabolismo , Animales , Senescencia Celular , Humanos , Microtúbulos/química , Tubulina (Proteína)/metabolismo
5.
Cell ; 146(4): 582-92, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21854983

RESUMEN

Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures in vitro microtubule assembly with nanometer resolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-of-magnitude higher than currently estimated in the literature.


Asunto(s)
Microtúbulos/metabolismo , Animales , Línea Celular , Cinética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Porcinos , Tubulina (Proteína)/metabolismo
6.
Cell ; 138(6): 1174-83, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766569

RESUMEN

Motor proteins in the kinesin-8 family depolymerize microtubules in a length-dependent manner that may be crucial for controlling the length of organelles such as the mitotic spindle. We used single-molecule microscopy to understand the mechanism of length-dependent depolymerization by the budding yeast kinesin-8, Kip3p. We found that after binding at a random position on a microtubule and walking to the plus end, an individual Kip3p molecule pauses there until an incoming Kip3p molecule bumps it off. Kip3p dissociation is accompanied by removal of just one or two tubulin dimers (on average). Such a cooperative mechanism leads to a depolymerization rate that is proportional to the flux of motors to the microtubule end and accounts for the length dependence of depolymerization. This type of feedback between length and disassembly may serve as a model for understanding how an ensemble of molecules can measure and control polymer length.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Cinesinas , Saccharomyces cerevisiae/citología
8.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34215693

RESUMEN

The systematic variation of diameters in branched networks has tantalized biologists since the discovery of da Vinci's rule for trees. Da Vinci's rule can be formulated as a power law with exponent two: The square of the mother branch's diameter is equal to the sum of the squares of those of the daughters. Power laws, with different exponents, have been proposed for branching in circulatory systems (Murray's law with exponent 3) and in neurons (Rall's law with exponent 3/2). The laws have been derived theoretically, based on optimality arguments, but, for the most part, have not been tested rigorously. Using superresolution methods to measure the diameters of dendrites in highly branched Drosophila class IV sensory neurons, we have found that these types of power laws do not hold. In their place, we have discovered a different diameter-scaling law: The cross-sectional area is proportional to the number of dendrite tips supported by the branch plus a constant, corresponding to a minimum diameter of the terminal dendrites. The area proportionality accords with a requirement for microtubules to transport materials and nutrients for dendrite tip growth. The minimum diameter may be set by the force, on the order of a few piconewtons, required to bend membrane into the highly curved surfaces of terminal dendrites. Because the observed scaling differs from Rall's law, we propose that cell biological constraints, such as intracellular transport and protrusive forces generated by the cytoskeleton, are important in determining the branched morphology of these cells.


Asunto(s)
Dendritas/fisiología , Drosophila melanogaster/fisiología , Modelos Biológicos , Animales , Citoesqueleto/fisiología
9.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34140336

RESUMEN

Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.


Asunto(s)
Células/metabolismo , Metabolismo Energético , Fenómenos Físicos
10.
Biophys J ; 122(4): 616-623, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36659852

RESUMEN

Microtubules are dynamic polymers that undergo stochastic transitions between growing and shrinking phases. The structural and chemical properties of these phases remain poorly understood. The transition from growth to shrinkage, termed catastrophe, is not a first-order reaction but rather a multistep process whose frequency increases with the growth time: the microtubule ages as the older microtubule tip becomes more unstable. Aging shows that the growing phase is not a single state but comprises several substates of increasing instability. To investigate whether the shrinking phase is also multistate, we characterized the kinetics of microtubule shrinkage following catastrophe using an in vitro reconstitution assay with purified tubulins. We found that the shrinkage speed is highly variable across microtubules and that the shrinkage speed of individual microtubules slows down over time by as much as several fold. The shrinkage slowdown was observed in both fluorescently labeled and unlabeled microtubules as well as in microtubules polymerized from tubulin purified from different species, suggesting that the shrinkage slowdown is a general property of microtubules. These results indicate that microtubule shrinkage, like catastrophe, is time dependent and that the shrinking microtubule tip passes through a succession of states of increasing stability. We hypothesize that the shrinkage slowdown is due to destabilizing events that took place during growth, which led to multistep catastrophe. This suggests that the aging associated with growth is also manifested during shrinkage, with the older, more unstable growing tip being associated with a faster depolymerizing shrinking tip.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Microtúbulos/química , Tubulina (Proteína)/química , Polímeros
11.
Nat Rev Mol Cell Biol ; 12(6): 392-8, 2011 06.
Artículo en Inglés | MEDLINE | ID: mdl-21602907

RESUMEN

Nearly 60 years ago, Alan Turing showed theoretically how two chemical species, termed morphogens, diffusing and reacting with each other can generate spatial patterns. Diffusion plays a crucial part in transporting chemical signals through space to establish the length scale of the pattern. When coupled to chemical reactions, mechanical processes - forces and flows generated by motor proteins - can also define length scales and provide a mechanochemical basis for morphogenesis. forces and flows generated by motor proteins - can also define length scales and provide a mechanochemical basis for morphogenesis.


Asunto(s)
Diferenciación Celular , Proteínas Motoras Moleculares/metabolismo , Morfogénesis , Animales , Difusión , Modelos Biológicos , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 116(12): 5533-5541, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30837315

RESUMEN

The remodeling of the microtubule cytoskeleton underlies dynamic cellular processes, such as mitosis, ciliogenesis, and neuronal morphogenesis. An important class of microtubule remodelers comprises the severases-spastin, katanin, and fidgetin-which cut microtubules into shorter fragments. While severing activity might be expected to break down the microtubule cytoskeleton, inhibiting these enzymes in vivo actually decreases, rather increases, the number of microtubules, suggesting that severases have a nucleation-like activity. To resolve this paradox, we reconstituted Drosophila spastin in a dynamic microtubule assay and discovered that it is a dual-function enzyme. In addition to its ATP-dependent severing activity, spastin is an ATP-independent regulator of microtubule dynamics that slows shrinkage and increases rescue. We observed that spastin accumulates at shrinking ends; this increase in spastin concentration may underlie the increase in rescue frequency and the slowdown in shortening. The changes in microtubule dynamics promote microtubule regrowth so that severed microtubule fragments grow, leading to an increase in the number and mass of microtubules. A mathematical model shows that spastin's effect on microtubule dynamics is essential for this nucleation-like activity: spastin switches microtubules into a state where the net flux of tubulin onto each polymer is positive, leading to the observed exponential increase in microtubule mass. This increase in the microtubule mass accounts for spastin's in vivo phenotypes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Espastina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Drosophila melanogaster/metabolismo
13.
Biophys J ; 120(15): 3222-3233, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34175294

RESUMEN

Drosophila class IV neurons are polymodal nociceptors that detect noxious mechanical, thermal, optical, and chemical stimuli. Escape behaviors in response to attacks by parasitoid wasps are dependent on class IV cells, whose highly branched dendritic arbors form a fine meshwork that is thought to enable detection of the wasp's needle-like ovipositor barb. To understand how mechanical stimuli trigger cellular responses, we used a focused 405-nm laser to create highly localized lesions to probe the precise position needed to evoke responses. By imaging calcium signals in dendrites, axons, and soma in response to stimuli of varying positions, intensities, and spatial profiles, we discovered that there are two distinct nociceptive pathways. Direct stimulation to dendrites (the contact pathway) produces calcium responses in axons, dendrites, and the cell body, whereas stimulation adjacent to the dendrite (the noncontact pathway) produces calcium responses in the axons only. We interpret the noncontact pathway as damage to adjacent cells releasing diffusible molecules that act on the dendrites. Axonal responses have higher sensitivities and shorter latencies. In contrast, dendritic responses have lower sensitivities and longer latencies. Stimulation of finer, distal dendrites leads to smaller responses than stimulation of coarser, proximal dendrites, as expected if the contact response depends on the geometric overlap of the laser profile and the dendrite diameter. Because the axon signals to the central nervous system to trigger escape behaviors, we propose that the density of the dendritic meshwork is high not only to enable direct contact with the ovipositor but also to enable neuronal activation via diffusing signals from damaged surrounding cells. Dendritic contact evokes responses throughout the dendritic arbor, even to regions distant and distal from the stimulus. These dendrite-wide calcium signals may facilitate hyperalgesia or cellular morphological changes after dendritic damage.


Asunto(s)
Axones , Nociceptores , Dendritas , Rayos Láser , Neuronas
14.
Nat Rev Mol Cell Biol ; 10(8): 569-74, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19513082

RESUMEN

Recent experiments suggest that microtubules do not grow steadily but instead elongate at a rate that varies in time. We argue that this variation might arise from fluctuations in the length of a dynamic GTP-tubulin cap at the microtubule end. We propose that these fluctuations can lead to a switch in the dynamics of a microtubule end between growth and shrinkage, and provide insight into how the sensitivity of this switch can be changed by microtubule polymerases, such as XMAP215, and tensile forces, through the stabilization of initial contacts in the cap.


Asunto(s)
Microtúbulos/metabolismo , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Biológicos , Tubulina (Proteína)/metabolismo
15.
Biophys J ; 117(11): 2066-2078, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31708162

RESUMEN

Microtubules are dynamic cytoskeletal polymers whose growth and shrinkage are highly regulated as eukaryotic cells change shape, move, and divide. One family of microtubule regulators includes the ATP-hydrolyzing enzymes spastin, katanin, and fidgetin, which sever microtubule polymers into shorter fragments. Paradoxically, severases can increase microtubule number and mass in cells. Recent work with purified spastin and katanin accounts for this phenotype by showing that, in addition to severing, these enzymes modulate microtubule dynamics by accelerating the conversion of microtubules from their shrinking to their growing states and thereby promoting their regrowth. This leads to the observed exponential increase in microtubule mass. Spastin also influences the steady-state distribution of microtubule lengths, changing it from an exponential, as predicted by models of microtubule dynamic instability, to a peaked distribution. This effect of severing and regrowth by spastin on the microtubule length distribution has not been explained theoretically. To solve this problem, we formulated and solved a master equation for the time evolution of microtubule lengths in the presence of severing and microtubule dynamic instability. We then obtained numerical solutions to the steady-state length distribution and showed that the rate of severing and the speed of microtubule growth are the dominant parameters determining the steady-state length distribution. Furthermore, we found that the amplification rate is predicted to increase with severing, which is, to our knowledge, a new result. Our results establish a theoretical basis for how severing and dynamics together can serve to nucleate new microtubules, constituting a versatile mechanism to regulate microtubule length and mass.


Asunto(s)
Enzimas/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Adenosina Trifosfato/metabolismo , Animales , Estabilidad de Enzimas , Enzimas/química , Cinética
16.
Biophys J ; 117(4): 679-687, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31400919

RESUMEN

Cilia and flagella are long, slender organelles found in many eukaryotic cells, where they have sensory, developmental, and motile functions. All cilia and flagella contain a microtubule-based structure called the axoneme. In motile cilia and flagella, which drive cell locomotion and fluid transport, the axoneme contains, along most of its length, motor proteins from the axonemal dynein family. These motor proteins drive motility by using energy derived from the hydrolysis of ATP to generate a bending wave, which travels down the axoneme. As a first step toward visualizing the ATPase activity of the axonemal dyneins during bending, we have investigated the kinetics of nucleotide binding to axonemes. Using a specially built ultraviolet total internal reflection fluorescence microscope, we found that the fluorescent ATP analog methylanthraniloyl ATP (mantATP), which has been shown to support axonemal motility, binds all along isolated, immobilized axonemes. By studying the recovery of fluorescence after photobleaching, we found that there are three mantATP binding sites: one that bleaches rapidly (time constant ≈ 1.7 s) and recovers slowly (time constant ≈ 44 s), one that bleaches with the same time constant but does not recover, and one that does not bleach. By reducing the dynein content in the axoneme using mutants and salt extraction, we provide evidence that the slow-recovering component, but not the other components, corresponds to axonemal dyneins. The recovery rate of this component, however, is too slow to be consistent with the activation of beating observed at higher mantATP concentrations; this indicates that the dyneins may be inhibited due to their immobilization at the surface. The development of this method is a first step toward direct observation of the traveling wave of dynein activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axonema/metabolismo , Dineínas/metabolismo , Proteínas de Plantas/metabolismo , Axonema/ultraestructura , Sitios de Unión , Chlamydomonas reinhardtii , Dineínas/química , Dineínas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Cinética , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica
17.
Phys Rev Lett ; 122(18): 188101, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144901

RESUMEN

Kinesins are molecular motors that carry cellular cargoes. While the mechanics of single kinesins are well characterized experimentally, the behavior of multiple kinesins varies considerably among experiments. The basis for this variability is unknown. Here, we resolve single-motor force measurements into a vertical component, which accelerates kinesin detachment, and a horizontal component, which decelerates the detachment when resisting the motor. This directionality, when the different experimental geometries are considered, can account for much of the variation in multiple motor dynamics.

18.
Bioessays ; 39(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28960439

RESUMEN

Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells.


Asunto(s)
Caenorhabditis elegans/metabolismo , División Celular , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiología
19.
Proc Natl Acad Sci U S A ; 113(46): E7176-E7184, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27803321

RESUMEN

Microtubules are structural polymers inside of cells that are subject to posttranslational modifications. These posttranslational modifications create functionally distinct subsets of microtubule networks in the cell, and acetylation is the only modification that takes place in the hollow lumen of the microtubule. Although it is known that the α-tubulin acetyltransferase (αTAT1) is the primary enzyme responsible for microtubule acetylation, the mechanism for how αTAT1 enters the microtubule lumen to access its acetylation sites is not well understood. By performing biochemical assays, fluorescence and electron microscopy experiments, and computational simulations, we found that αTAT1 enters the microtubule lumen through the microtubule ends, and through bends or breaks in the lattice. Thus, microtubule structure is an important determinant in the acetylation process. In addition, once αTAT1 enters the microtubule lumen, the mobility of αTAT1 within the lumen is controlled by the affinity of αTAT1 for its acetylation sites, due to the rapid rebinding of αTAT1 onto highly concentrated α-tubulin acetylation sites. These results have important implications for how acetylation could gradually accumulate on stable subsets of microtubules inside of the cell.


Asunto(s)
Acetiltransferasas/metabolismo , Microtúbulos/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo
20.
J Microsc ; 272(1): 60-66, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044498

RESUMEN

When studying microtubules in vitro, label free imaging of single microtubules is necessary when the quantity of purified tubulin is too low for efficient fluorescent labelling or there is concern that labelling will disrupt function. Commonly used techniques for observing unlabelled microtubules, such as video enhanced differential interference contrast, dark-field and more recently laser-based interferometric scattering microscopy, suffer from a number of drawbacks. The contrast of differential interference contrast images depends on the orientation of the microtubules, dark-field is highly sensitive to impurities and optical misalignments. In addition, all of these techniques require costly optical components such as Nomarski prisms, dark-field condensers, lasers and laser scanners. Here we show that single microtubules can be imaged at high speed and with high contrast using interference reflection microscopy without the aforementioned drawbacks. Interference reflection microscopy is simple to implement, requiring only the incorporation of a 50/50 mirror instead of a dichroic in a fluorescence microscope, and with appropriate microscope settings has a similar signal-to-noise ratio to differential interference contrast and fluorescence. We demonstrated the utility of interference reflection microscopy by high-speed imaging and tracking of dynamic microtubules at 100 frames per second. In conclusion, the optical quality of interference reflection microscopy falls within the range of other microscope techniques, being inferior to some and superior to others, depending on the metric used and, with minimal microscope modification, can be used to study the dynamics of unlabelled microtubules. LAY DESCRIPTION: The cytoskeleton gives a cell its shape and plays a major role in its movement and division. It's also helps organise the content of cells and is the base for intracellular transport. Important components of the cytoskeleton are microtubules, which are hollow cylindrical beams (25 nm in diameter) that assemble from protein building blocks called tubulin. Deficiencies in microtubules are related to many diseases including cancer and Alzheimer. Given their important role, microtubules are heavily investigated in many laboratories. One way to study microtubules is to isolate them from cells and image them using light microscopy. Over the years a number of imaging techniques have been used. These techniques have a number of drawbacks which are addressed by ongoing efforts which this work is a part of. Here, we present a method based on light interference that produce high quality images of microtubules. The technique is cheap and easy to implement making it accessible to a wide base of researchers.


Asunto(s)
Luz , Microscopía de Interferencia/métodos , Microtúbulos , Animales , Bovinos , Fluorescencia , Microscopía Fluorescente/métodos , Microscopía de Interferencia/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA