Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Alcohol Clin Exp Res ; 46(1): 77-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34825395

RESUMEN

BACKGROUND: Abnormal diffusion within white matter (WM) tracts has been linked to cognitive impairment in children with fetal alcohol spectrum disorder. Whether changes to myelin organization and structure underlie the observed abnormal diffusion patterns remains unknown. Using a third trimester-equivalent mouse model of alcohol exposure, we previously demonstrated acute loss of oligodendrocyte lineage cells with persistent loss of myelin basic protein and lower fractional anisotropy (FA) in the corpus callosum (CC). Here, we tested whether these WM deficits are accompanied by changes in: (i) axial diffusion (AD) and radial diffusion (RD), (ii) myelin ultrastructure, or (iii) structural components of the node of Ranvier. METHODS: Mouse pups were exposed to alcohol or air vapor for 4 h daily from postnatal day (P)3 to P15 (BEC: 160.4 ± 12.0 mg/dl; range = 128.2 to 185.6 mg/dl). Diffusion tensor imaging (DTI) and histological analyses were performed on brain tissue isolated at P50. Diffusion parameters were measured with Paravision™ 5.1 software (Bruker) following ex vivo scanning in a 7.0 T MRI. Nodes of Ranvier were identified using high-resolution confocal imaging of immunofluorescence for Nav 1.6 (nodes) and Caspr (paranodes) and measured using Imaris™ imaging software (Bitplane). Myelin ultrastructure was evaluated by calculating the G-ratio (axonal diameter/myelinated fiber diameter) on images acquired using transmission electron microscopy. RESULTS: Consistent with our previous study, high resolution DTI at P50 showed lower FA in the CC of alcohol-exposed mice (p = 0.0014). Here, we show that while AD (diffusion parallel to CC axons) was similar between treatment groups (p = 0.30), RD (diffusion perpendicular to CC axons) in alcohol-exposed subjects was significantly higher than in controls (p = 0.0087). In the posterior CC, where we identified the highest degree of abnormal diffusion, node of Ranvier length did not differ between treatment groups (p = 0.41); however, the G-ratio of myelinated axons was significantly higher in alcohol-exposed animals than controls (p = 0.023). CONCLUSIONS: High resolution DTI revealed higher RD at P50 in the CC of alcohol-exposed animals, suggesting less myelination of axons, particularly in the posterior regions. In agreement with these findings, ultrastructural analysis of myelinated axons in the posterior CC showed reduced myelin thickness in alcohol-exposed animals, evidenced by a higher G-ratio.


Asunto(s)
Etanol/administración & dosificación , Trastornos del Espectro Alcohólico Fetal/patología , Vaina de Mielina/ultraestructura , Animales , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Femenino , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Edad Gestacional , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Embarazo , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología
2.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34235927

RESUMEN

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Asunto(s)
Uranio , Carbono , Carbón Mineral , Polvo/análisis , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Uranio/análisis , Uranio/toxicidad
3.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L968-L980, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997513

RESUMEN

Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.


Asunto(s)
Colágeno Tipo V/metabolismo , Hipertensión Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Núcleo Celular/metabolismo , Inmunidad Celular/fisiología , Trasplante de Pulmón/métodos
4.
J Neurochem ; 148(3): 426-439, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30289974

RESUMEN

Glutathione peroxidase 4 (GPx4) is the only enzyme capable of reducing toxic lipid hydroperoxides in biological membranes to the corresponding alcohols using glutathione as the electron donor. GPx4 is the major inhibitor of ferroptosis, a non-apoptotic and iron-dependent programmed cell death pathway, which has been shown to occur in various neurological disorders with severe oxidative stress. In this study, we investigate whether GPx4 expression is altered in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). The results clearly show that mRNA expression for all three GPx4 isoforms (cytoplasmic, mitochondrial and nuclear) decline in multiple sclerosis gray matter and in the spinal cord of MOG35-55 peptide-induced EAE. The amount of GPx4 protein is also reduced in EAE, albeit not in all cells. Neuronal GPx4 immunostaining, mostly cytoplasmic, is lower in EAE spinal cords than in control spinal cords, while oligodendrocyte GPx4 immunostaining, mainly nuclear, is unaltered. Neither control nor EAE astrocytes and microglia cells show GPx4 labeling. In addition to GPx4, two other negative modulators of ferroptosis (γ-glutamylcysteine ligase and cysteine/glutamate antiporter), which are critical to maintain physiological levels of glutathione, are diminished in EAE. The decrease in the ability to eliminate hydroperoxides was also evidenced by the accumulation of lipid peroxidation products and the reduction in the proportion of the docosahexaenoic acid in non-myelin lipids. These findings, along with presence of abnormal neuronal mitochondria morphology, which includes an irregular matrix, disrupted outer membrane and reduced/absent cristae, are consistent with the occurrence of ferroptotic damage in inflammatory demyelinating disorders.


Asunto(s)
Encéfalo/enzimología , Encefalomielitis Autoinmune Experimental/enzimología , Glutatión Peroxidasa/metabolismo , Esclerosis Múltiple/enzimología , Médula Espinal/enzimología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Muerte Celular , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/enzimología , Mitocondrias/patología , Esclerosis Múltiple/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Médula Espinal/patología
5.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L609-L624, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213473

RESUMEN

Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4+ T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4+ T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1-/-, lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4+, CD8+, or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1-/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4+ but not CD8+ T cells restored the hypertensive phenotype in RAG1-/- mice. Interestingly, RAG1-/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4+ cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipoxia/complicaciones , Hipoxia/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Presión Sanguínea/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Recuento de Células , Movimiento Celular/efectos de los fármacos , Enfermedad Crónica , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Proteínas de Homeodominio/metabolismo , Hipertensión Pulmonar/fisiopatología , Interleucina-17/farmacología , Interleucina-6/metabolismo , Pulmón/metabolismo , Depleción Linfocítica , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sístole/efectos de los fármacos , Sístole/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos
6.
Biomedicines ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397942

RESUMEN

RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.

7.
Front Toxicol ; 6: 1376587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188505

RESUMEN

Gadolinium-based contrast agents are increasingly used in clinical practice. While these pharmaceuticals are verified causal agents in nephrogenic systemic fibrosis, there is a growing body of literature supporting their role as causal agents in symptoms associated with gadolinium exposure after intravenous use and encephalopathy following intrathecal administration. Gadolinium-based contrast agents are multidentate organic ligands that strongly bind the metal ion to reduce the toxicity of the metal. The notion that cationic gadolinium dissociates from these chelates and causes the disease is prevalent among patients and providers. We hypothesize that non-ligand-bound (soluble) gadolinium will be exceedingly low in patients. Soluble, ionic gadolinium is not likely to be the initial step in mediating any disease. The Kidney Institute of New Mexico was the first to identify gadolinium-rich nanoparticles in skin and kidney tissues from magnetic resonance imaging contrast agents in rodents. In 2023, they found similar nanoparticles in the kidney cells of humans with normal renal function, likely from contrast agents. We suspect these nanoparticles are the mediators of chronic toxicity from magnetic resonance imaging contrast agents. This article explores associations between gadolinium contrast and adverse health outcomes supported by clinical reports and rodent models.

8.
Res Sq ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38765967

RESUMEN

Rising global concentrations of environmental micro- and nanoplastics (MNPs) drive concerns for human exposure and health outcomes. Applying pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) methods to isolate and quantify MNPs from human samples, we compared MNP accumulation in kidneys, livers, and brains. Autopsy samples from the Office of the Medical Investigator in Albuquerque, NM, collected in 2016 and in 2024, were digested for Py-GC/MS analysis of 12 polymers. Brains exhibited higher concentrations of MNPs than liver or kidney samples. All organs exhibited significant increases from 2016 to 2024. Polyethylene was the predominant polymer; the relative proportion of polyethylene MNPs was greater in brain samples than in liver or kidney. Transmission electron microscopy verified the nanoscale nature of isolated particles, which largely appeared to be aged, shard-like plastics remnants across a wide range of sizes. Results demonstrate that MNPs are selectively accumulated into the human brain and concentrations are rising over time.

9.
Sci Rep ; 13(1): 2025, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739294

RESUMEN

The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced complications range from acute kidney injury, symptoms associated with gadolinium exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients were obtained and analyzed. Kidneys (human and mouse) were assessed with transmission electron microscopy and scanning transmission electron microscopy with X-ray energy-dispersive spectroscopy. MRI contrast agent treatment resulted in unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and phosphorus. We conclude that MRI contrast agents are not physiologically inert. The long-term safety of these synthetic metal-ligand complexes, especially with repeated use, should be studied further.


Asunto(s)
Complejos de Coordinación , Nanopartículas , Humanos , Animales , Ratones , Medios de Contraste/efectos adversos , Medios de Contraste/química , Gadolinio/efectos adversos , Gadolinio/química , Riñón/diagnóstico por imagen , Nanopartículas/efectos adversos , Imagen por Resonancia Magnética/métodos
10.
ACS Nano ; 17(17): 16308-16325, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37643407

RESUMEN

Owing to their uniform and tunable particle size, pore size, and shape, along with their modular surface chemistry and biocompatibility, mesoporous silica nanoparticles (MSNs) have found extensive applications as nanocarriers to deliver therapeutic, diagnostic and combined "theranostic" cargos to cells and tissues. Although thoroughly investigated, MSN have garnered FDA approval for only one MSN system via oral administration. One possible reason is that there is no recognized, reproducible, and widely adopted MSN synthetic protocol, meaning not all MSNs are created equal in the laboratory nor in the eyes of the FDA. This manuscript provides the sol-gel and MSN research communities a reproducible, fully characterized synthetic protocol to synthesize MSNs and corresponding lipid-coated MSN delivery vehicles with predetermined particle size, pore size, and drug loading and release characteristics. By carefully articulating the step-by-step synthetic procedures and highlighting critical points and troubleshooting, augmented with videos and schematics, this Article will help researchers entering this rapidly expanding field to yield reliable results.


Asunto(s)
Nanomedicina , Nanopartículas , ARN Interferente Pequeño , ARN Mensajero , Lípidos
11.
Laryngoscope ; 133(11): 3087-3093, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37204106

RESUMEN

OBJECTIVE: To evaluate the safety, immunogenicity, and efficacy of INO-3107, a DNA immunotherapy designed to elicit targeted T-cell responses against human papillomavirus (HPV) types 6 and 11, in adult patients with recurrent respiratory papillomatosis (RRP; NCT04398433). METHODS: Eligible patients required ≥2 surgical interventions for RRP in the year preceding dosing. INO-3107 was administered by intramuscular (IM) injection followed by electroporation (EP) on weeks 0, 3, 6, and 9. Patients underwent surgical debulking within 14 days prior to first dose, with office laryngoscopy and staging at screening and weeks 6, 11, 26, and 52. Primary endpoint was safety and tolerability, as assessed by treatment-emergent adverse events (TEAEs). Secondary endpoints included frequency of surgical interventions post-INO-3107 and cellular immune responses. RESULTS: An initial cohort of 21 patients was enrolled between October 2020 and August 2021. Fifteen (71.4%) patients had ≥1 TEAE; 11 (52.4%) were Grade 1, and 3 (14.3%) were Grade 3 (none treatment related). The most frequently reported TEAE was injection site or procedural pain (n = 8; 38.1%). Sixteen (76.2%) patients had fewer surgical interventions in the year following INO-3107 administration, with a median decrease of 3 interventions versus the preceding year. The RRP severity score, modified by Pransky, showed improvement from baseline to week 52. INO-3107 induced durable cellular responses against HPV-6 and HPV-11, with an increase in activated CD4 and CD8 T cells and CD8 cells with lytic potential. CONCLUSION: The data suggest that INO-3107 administered by IM/EP is tolerable and immunogenic and provides clinical benefit to adults with RRP. LEVEL OF EVIDENCE: 3 Laryngoscope, 133:3087-3093, 2023.


Asunto(s)
Infecciones por Papillomavirus , Infecciones del Sistema Respiratorio , Adulto , Humanos , Papillomavirus Humano 11 , Papillomavirus Humano 6
12.
ACS Earth Space Chem ; 5(6): 1278-1287, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34308092

RESUMEN

We integrated microscopy, spectroscopy, culturing and molecular biology, and aqueous chemistry techniques to evaluate arsenic (As) accumulation in hydroponically grown Schizachyrium scoparium inoculated with endophytic fungi. Schizachyrium scoparium grows in historically contaminated sediment in the Cheyenne River Watershed and was used for laboratory experiments with As(V) ranging from 0 to 2.5 mg L-1 at circumneutral pH. Arsenic accumulation in regional plants has been a community concern for several decades, yet mechanisms affecting As accumulation in plants associated with endophytic fungi remain poorly understood. Colonization of roots by endophytic fungi supported better external and vascular cellular structure, increased biomass production, increased root lengths and increased P uptake, compared to noninoculated plants (p value <0.05). After exposure to As(V), an 80% decrease of As was detected in solution and accumulated mainly in the roots (0.82-13.44 mg kg-1) of noninoculated plants. Endophytic fungi mediated intracellular uptake into root cells and translocation of As. Electron microprobe X-ray mapping analyses detected Ca-P and Mg-P minerals with As on the root surface of exposed plants, suggesting that these minerals could lead to As adsorption on the root surface through surface complexation or coprecipitation. Our findings provide new insights regarding biological and physical-chemical processes affecting As accumulation in plants for risk assessment applications and bioremediation strategies.

13.
Kidney360 ; 1(6): 561-568, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-34423308

RESUMEN

Gadolinium-based contrast agents (GBCAs) have provided much needed image enhancement in magnetic resonance imaging (MRI) important in the advancement of disease diagnosis and treatment. The paramagnetic properties of ionized gadolinium have facilitated these advancements, but ionized gadolinium carries toxicity risk. GBCAs were formulated with organic chelates designed to reduce these toxicity risks from unbound gadolinium ions. They were preferred over iodinated contrast used in computed tomography and considered safe for use. As their use expanded, the development of new diseases associated with their use (including nephrogenic systemic fibrosis) has drawn more attention and ultimately caution with their clinical administration in those with impaired renal function. Use of GBCAs in those with preserved renal function was considered to be safe. However, in this new era with emerging clinical and experimental evidence of brain gadolinium deposition in those with repeated exposure, these safety assumptions are once again brought into question. This review article aims to add new perspectives in thinking about the role of GBCA in current clinical use. The new information begs for further discussion and consideration of the risk-benefit ratio of use of GBCAs.


Asunto(s)
Medios de Contraste , Dermopatía Fibrosante Nefrogénica , Medios de Contraste/efectos adversos , Gadolinio/efectos adversos , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/efectos adversos , Dermopatía Fibrosante Nefrogénica/inducido químicamente
14.
Acta Biomater ; 114: 358-368, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702530

RESUMEN

CRISPR gene editing technology is strategically foreseen to control diseases by correcting underlying aberrant genetic sequences. In order to overcome drawbacks associated with viral vectors, the establishment of an effective non-viral CRISPR delivery vehicle has become an important goal for nanomaterial scientists. Herein, we introduce a monosized lipid-coated mesoporous silica nanoparticle (LC-MSN) delivery vehicle that enables both loading of CRISPR components [145 µg ribonucleoprotein (RNP) or 40 µg plasmid/mg nanoparticles] and efficient release within cancer cells (70%). The RNP-loaded LC-MSN exhibited 10% gene editing in both in vitro reporter cancer cell lines and in an in vivo Ai9-tdTomato reporter mouse model. The structural and chemical versatility of the mesoporous silica core and lipid coating along with framework dissolution-assisted cargo delivery open new prospects towards safe CRISPR component delivery and enhanced gene editing. STATEMENT OF SIGNIFICANCE: After the discovery of CRISPR gene-correcting technology in bacteria. The translation of this technology to mammalian cells may change the face of cancer therapy within the next years. This was first made possible through the use of viral vectors; however, such systems limit the safe translation of CRISPR into clinics because its difficult preparation and immunogenicity. Therefore, biocompatible non-viral nanoparticulate systems are required to successfully deliver CRISPR into cancer cells. The present study presents the use of biomimetic lipid-coated mesoporous silica nanoparticles showing successful delivery of CRISPR ribonucleoprotein and plasmid into HeLa cervical and A549 lung cancer cells as well as successful gene editing in mice brain.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Membrana Dobles de Lípidos , Ratones
15.
Gynecol Oncol ; 114(3): 465-71, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19501895

RESUMEN

OBJECTIVES: GPR30 is a 7-transmembrane G protein-coupled estrogen receptor that functions alongside traditional estrogen receptors to regulate cellular responses to estrogen. Recent studies suggest that GPR30 expression is linked to lower survival rates in endometrial and breast cancer. This study was conducted to evaluate GPR30 expression in ovarian tumors. METHODS: GPR30 expression was analyzed using immunohistochemistry and archival specimens from 45 patients with ovarian tumors of low malignant potential (LMP) and 89 patients with epithelial ovarian cancer (EOC). Expression, defined as above or below the median (intensity times the percentage of positive epithelial cells) was correlated with predictors of adverse outcome and survival. RESULTS: GPR30 expression above the median was observed more frequently in EOC than in LMP tumors (48.3% vs. 20%, p=0.002), and in EOC was associated with lower 5-year survival rates (44.2% vs. 82.6%, Log-rank p<0.001). Tumor grade and FIGO stage, the other significant predictors of survival, were used to stratify cases into "high risk" and "low risk" groups. The 5-year survival rate for "low risk" EOC (all grade 1 and Stage I/II, grade 2) was 100%. In "high risk" EOC (all grade 3 and Stage III/IV, grade 2), the difference in 5-year survival by GPR 30 expression was significant (33.3% vs. 72.4%, p=0.001). CONCLUSIONS: The novel estrogen-responsive receptor GPR30 is preferentially expressed in "high risk" EOC and is associated with lower survival rates. Further investigation of GPR30 as a potential target for therapeutic intervention in high risk EOC is warranted.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Ováricas/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Células Epiteliales/patología , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Ováricas/patología , Pronóstico , Receptores de Estrógenos , Tasa de Supervivencia
16.
ACS Earth Space Chem ; 3(10): 2190-2196, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31742240

RESUMEN

The role of calcium (Ca) on the cellular distribution of U(VI) in Brassica juncea roots and root-to-shoot translocation was investigated using hydroponic experiments, microscopy, and spectroscopy. Uranium accumulated mainly in the roots (727-9376 mg kg-1) after 30 days of exposure to 80 µM dissolved U in water containing 1 mM HCO3 - at different Ca concentrations (0-6 mM) at pH 7.5. However, the concentration of U in the shoots increased 22 times in experiments with 6 mM Ca compared to 0 mM Ca. In the Ca control experiment, transmission electron microscopy-energy-dispersive spectroscopy analyses detected U-P-bearing precipitates in the cortical apoplast of parenchyma cells. In experiments with 0.3 mM Ca, U-P-bearing precipitates were detected in the cortical apoplast and the bordered pits of xylem cells. In experiments with 6 mM Ca, U-P-bearing precipitates aggregated in the xylem with no apoplastic precipitation. These results indicate that Ca in carbonate water inhibits the transport and precipitation of U in the root cortical apoplast and facilitates the symplastic transport and translocation toward shoots. These findings reveal the considerable role of Ca in the presence of carbonate in facilitating the transport of U in plants and present new insights for future assessment and phytoremediation strategies.

17.
Pulm Circ ; 8(3): 2045894018780734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767573

RESUMEN

Interleukin-6 (IL-6) is a pleotropic cytokine that signals through the membrane-bound IL-6 receptor (mIL-6R) to induce anti-inflammatory ("classic-signaling") responses. This cytokine also binds to the soluble IL-6R (sIL-6R) to promote inflammation ("trans-signaling"). mIL-6R expression is restricted to hepatocytes and immune cells. Activated T cells release sIL-6R into adjacent tissues to induce trans-signaling. These cellular actions require the ubiquitously expressed membrane receptor gp130. Reports show that IL-6 is produced by pulmonary arterial smooth muscle cells (PASMCs) exposed to hypoxia in culture as well as the medial layer of the pulmonary arteries in mice exposed to chronic hypoxia (CH), and IL-6 knockout mice are protected from CH-induced pulmonary hypertension (PH). IL-6 has the potential to contribute to a broad array of downstream effects, such as cell growth and migration. CH-induced PH is associated with increased proliferation and migration of PASMCs to previously non-muscularized vessels of the lung. We tested the hypothesis that IL-6 trans-signaling contributes to CH-induced PH and arterial remodeling. Plasma levels of sgp130 were significantly decreased in mice exposed to CH (380 mmHg) for five days compared to normoxic control mice (630 mmHg), while sIL-6R levels were unchanged. Consistent with our hypothesis, mice that received the IL-6 trans-signaling-specific inhibitor sgp130Fc, a fusion protein of the soluble extracellular portion of gp130 with the constant portion of the mouse IgG1 antibody, showed attenuation of CH-induced increases in right ventricular systolic pressure, right ventricular and pulmonary arterial remodeling as compared to vehicle (saline)-treated control mice. In addition, PASMCs cultured in the presence of IL-6 and sIL-6R showed enhanced migration but not proliferation compared to those treated with IL-6 or sIL-6R alone or in the presence of sgp130Fc. These results indicate that IL-6 trans-signaling contributes to pulmonary arterial cell migration and CH-induced PH.

18.
Tissue Cell ; 48(6): 577-587, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27837912

RESUMEN

RNA binding proteins (RBPs) regulate gene expression by controlling mRNA export, translation, and stability. When altered, some RBPs allow cancer cells to grow, survive, and metastasize. Cold-inducible RNA binding protein (CIRP) is overexpressed in a subset of breast cancers, induces proliferation in breast cancer cell lines, and inhibits apoptosis. Although studies have begun to examine the role of CIRP in breast and other cancers, its role in normal breast development has not been assessed. We generated a transgenic mouse model overexpressing human CIRP in the mammary epithelium to ask if it plays a role in mammary gland development. Effects of CIRP overexpression on mammary gland morphology, cell proliferation, and apoptosis were studied from puberty through pregnancy, lactation and weaning. There were no gross effects on mammary gland morphology as shown by whole mounts. Immunohistochemistry for the proliferation marker Ki67 showed decreased proliferation during the lactational switch (the transition from pregnancy to lactation) in mammary glands from CIRP transgenic mice. Two markers of apoptosis showed that the transgene did not affect apoptosis during mammary gland involution. These results suggest a potential in vivo function in suppressing proliferation during a specific developmental transition.


Asunto(s)
Proliferación Celular/genética , Glándulas Mamarias Animales/metabolismo , Proteínas de Unión al ARN/biosíntesis , Animales , Apoptosis/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Antígeno Ki-67/biosíntesis , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Embarazo , Proteínas de Unión al ARN/genética , Destete
20.
Oncogene ; 21(33): 5097-107, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12140760

RESUMEN

BRCA1 mutation carriers have an increased susceptibility to breast and ovarian cancer. Excision of exon 11 of Brca1 in the mouse, using a conditional knockout (Cre-loxP) approach, results in mammary tumor formation after long latency. To characterize the genomic instability observed in these tumors, to establish a comparative map of chromosomal imbalances and to contribute to the validation of this mouse model of breast cancer, we have characterized chromosomal imbalances and aberrations using comparative genomic hybridization (CGH), and spectral karyotyping (SKY). We found that all tumors exhibit chromosome instability as evidenced by structural chromosomal aberrations and aneuploidy, yet they display a pattern of chromosomal gain and loss that is similar to the pattern in human breast carcinomas. Of note, nine of 15 tumors exhibited a gain of distal chromosome 11, a region that is orthologous to human chromosome 17q11-qter, the mapping position of Erbb2. However, our analysis suggests that genes distal to Erbb2 are the main targets of amplification. Four of the tumors also exhibited a copy number loss of proximal chromosome 11 (11A-B), a region orthologous to human 17p. In eight of the tumors we observed whole or partial gain of chromosome 15 centering on 15D2-D3 (orthologous to human chromosome 8q24), the map location of the c-Myc gene, and six of the tumors exhibited copy number loss of whole or partial chromosome 14, including 14D3, the map location of Rb1. We conclude that despite the tremendous shuffling of chromosomes during the course of mammalian evolution, the pattern of genomic imbalances is conserved between BRCA1-associated mammary gland tumors in mice and humans. Western blot analysis showed that while p53 is absent or mutated in some tumors, at least two tumors revealed wild-type protein, suggesting that other genetic events may lead to tumorigenesis. Similar to BRCA1-deficient mouse embryonic fibroblasts, the tumor cells contained supernumerary functional centrosomes with intact centrioles whose presence results in multipolar mitoses and aneuploidy.


Asunto(s)
Neoplasias de la Mama/genética , Centrosoma/patología , Aberraciones Cromosómicas , Genes BRCA1 , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Mutación/genética , Aneuploidia , Animales , Proteína BRCA1/genética , Western Blotting , Neoplasias de la Mama/patología , Pintura Cromosómica , Cromosomas Humanos Par 11/genética , Humanos , Cariotipificación , Ratones , Mitosis , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA