Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(1996): 20230262, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040803

RESUMEN

Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.


Asunto(s)
Ecosistema , Elasmobranquios , Animales , Arrecifes de Coral , Biodiversidad , Peces
2.
J Fish Biol ; 101(4): 797-810, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36056454

RESUMEN

The great hammerhead (Sphyrna mokarran) is a highly mobile, large-bodied shark primarily found in coastal-pelagic and semi-oceanic waters across a circumtropical range. It is a target or by-catch species in multiple fisheries, and as a result, rapid population declines have occurred in many regions. These declines have contributed to the species being assessed as globally critically endangered on the IUCN Red List. Although conservation and management measures have yielded promising results in some regions, such as the United States, high levels of at-vessel and post-release mortality remain a major concern to the species population recovery. This examined the vertical space use and thermal range of pop-off archival satellite-tagged S. mokarran in the western North Atlantic Ocean, expanding the understanding of the ecological niche of this species and providing insight into by-catch mitigation strategies for fisheries managers. The results showed that S. mokarran predominantly used shallow depths (75% of records <30 m) and had a narrow temperature range (89% of records between 23 and 28°C). Individual differences in depth use were apparent, and a strong diel cycle was observed, with sharks occupying significantly deeper depths during the daytime. Furthermore, two individuals were confirmed pregnant with one migrating from the Bahamas to South Carolina, U.S.A., providing further evidence of regional connectivity and parturition off the U.S. East Coast. The findings suggest that S. mokarran may be vulnerable to incidental capture in the western North Atlantic commercial longline fisheries due to substantial vertical overlap between the species and the gear. The results can be incorporated into conservation and management efforts to develop and/or refine mitigation measures focused on reducing the by-catch and associated mortality of this species, which can ultimately aide S. mokarran population recovery in areas with poor conservation status.


Asunto(s)
Tiburones , Animales , Explotaciones Pesqueras , Ecosistema , Océano Atlántico , Océanos y Mares
3.
Sci Rep ; 8(1): 551, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323131

RESUMEN

Animal behavior should optimize the difference between the energy they gain from prey and the energy they spend searching for prey. This is all the more critical for predators occupying the pelagic environment, as prey is sparse and patchily distributed. We theoretically derive two canonical swimming strategies for pelagic predators, that maximize their energy surplus while foraging. They predict that while searching, a pelagic predator should maintain small dive angles, swim at speeds near those that minimize the cost of transport, and maintain constant speed throughout the dive. Using biologging sensors, we show that oceanic whitetip shark (Carcharhinus longimanus) behavior matches these predictions. We estimate that daily energy requirements of an adult shark can be met by consuming approximately 1-1.5 kg of prey (1.5% body mass) per day; shark-borne video footage shows a shark encountering potential prey numbers exceeding that amount. Oceanic whitetip sharks showed incredible plasticity in their behavioral strategies, ranging from short low-energy bursts on descents, to high-speed vertical surface breaches from considerable depth. Oceanic whitetips live a life of energy speculation with minimization, very different to those of tunas and billfish.


Asunto(s)
Conducta Predatoria , Tiburones/fisiología , Natación , Adaptación Fisiológica , Animales , Metabolismo Energético , Océanos y Mares , Tiburones/metabolismo
4.
Sci Rep ; 8(1): 8351, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844605

RESUMEN

Large-bodied pelagic ectotherms such as sharks need to maintain internal temperatures within a favourable range in order to maximise performance and be cost-efficient foragers. This implies that behavioural thermoregulation should be a key feature of the movements of these animals, although field evidence is limited. We used depth and temperature archives from pop-up satellite tags to investigate the role of temperature in driving vertical movements of 16 oceanic whitetip sharks, Carcharhinus longimanus, (OWTs). Spectral analysis, linear mixed modelling, segmented regression and multivariate techniques were used to examine the effect of mean sea surface temperature (SST) and mixed layer depth on vertical movements. OWTs continually oscillated throughout the upper 200 m of the water column. In summer when the water column was stratified with high SSTs, oscillations increased in amplitude and cycle length and sharks reduced the time spent in the upper 50 m. In winter when the water column was cooler and well-mixed, oscillations decreased in amplitude and cycle length and sharks frequently occupied the upper 50 m. SSTs of 28 oC marked a distinct change in vertical movements and the onset of thermoregulation strategies. Our results have implications for the ecology of these animals in a warming ocean.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Tiburones/fisiología , Animales , Conservación de los Recursos Naturales , Ecología , Movimiento , Tiburones/metabolismo , Temperatura
5.
Mov Ecol ; 5: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725435

RESUMEN

BACKGROUND: Blue sharks (Prionace glauca) are among the most abundant and widely distributed of oceanic elasmobranchs. Millions are taken annually in pelagic longline fisheries and comprise the highest component of auctioned fin weight in the international shark fin trade. Though studies of blue sharks outnumber those of other large pelagic sharks, the species' complicated and sexually segregated life history still confound current understanding of Atlantic movement patterns. Lack of detailed information regarding movement and vertical behavior continues to limit management efforts that require such data for stock assessment and sustainable catch modeling. Therefore, this study aims to describe behavioral and ecological patterns distinct to aggregating and migrating blue sharks, and compare the findings to existing Atlantic movement models. RESULTS: Data collected from 23 blue sharks instrumented with pop-up satellite archival tags were used in statistical predictive regression models to investigate habitat use during a localized aggregation in the northwest Atlantic, while undergoing seasonal migrations, and with respect to environmental variables. Deployment durations ranged from 4 to 273 days, with sharks inhabiting both productive coastal waters and the open ocean, and exhibiting long-distance seasonal movements exceeding 3700 km. While aggregating on the continental shelf of the northwest Atlantic, blue sharks displayed consistent depth use independent of sex and life stage, and exhibited varied response to environmental (temperature and chlorophyll a) factors. As sharks dispersed from the aggregation site, depth use was influenced by bathymetry, latitude, demography, and presence in the Gulf Stream. Mature females were not observed at the New England tagging site, however, two mature females with recent mating wounds were captured and tagged opportunistically in The Bahamas, one of which migrated to the Mid-Atlantic Ridge. CONCLUSIONS: Vertical behaviors displayed by blue sharks varied greatly among locales; depth use off the continental shelf was significantly greater, and individuals exhibited a greater frequency of deep-diving behavior, compared to periods of aggregation on the continental shelf. Sexual segregation was evident, suggesting mature and immature males, and immature females may be subjected to high levels of anthropogenic exploitation in this region during periods of aggregation. Analysis of the spatio-temporal tracks revealed that nine individuals traveled beyond the United States EEZ, including a mature female captured in The Bahamas that migrated to the Mid-Atlantic Ridge. These results reflect and augment existing Atlantic migration models, and highlight the complex, synergistic nature of factors affecting blue shark ecology and the need for a cooperative management approach in the North Atlantic.

6.
R Soc Open Sci ; 4(2): 160611, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28386422

RESUMEN

Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.

7.
Ecol Evol ; 6(15): 5290-304, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27551383

RESUMEN

Comprehension of ecological processes in marine animals requires information regarding dynamic vertical habitat use. While many pelagic predators primarily associate with epipelagic waters, some species routinely dive beyond the deep scattering layer. Actuation for exploiting these aphotic habitats remains largely unknown. Recent telemetry data from oceanic whitetip sharks (Carcharhinus longimanus) in the Atlantic show a strong association with warm waters (>20°C) less than 200 m. Yet, individuals regularly exhibit excursions into the meso- and bathypelagic zone. In order to examine deep-diving behavior in oceanic whitetip sharks, we physically recovered 16 pop-up satellite archival tags and analyzed the high-resolution depth and temperature data. Diving behavior was evaluated in the context of plausible functional behavior hypotheses including interactive behaviors, energy conservation, thermoregulation, navigation, and foraging. Mesopelagic excursions (n = 610) occurred throughout the entire migratory circuit in all individuals, with no indication of site specificity. Six depth-versus-time descent and ascent profiles were identified. Descent profile shapes showed little association with examined environmental variables. Contrastingly, ascent profile shapes were related to environmental factors and appear to represent unique behavioral responses to abiotic conditions present at the dive apex. However, environmental conditions may not be the sole factors influencing ascents, as ascent mode may be linked to intentional behaviors. While dive functionality remains unconfirmed, our study suggests that mesopelagic excursions relate to active foraging behavior or navigation. Dive timing, prey constituents, and dive shape support foraging as the most viable hypothesis for mesopelagic excursions, indicating that the oceanic whitetip shark may regularly survey extreme environments (deep depths, low temperatures) as a foraging strategy. At the apex of these deep-water excursions, sharks exhibit a variable behavioral response, perhaps, indicating the presence or absence of prey.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA