Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chromosoma ; 131(3): 163-173, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35896680

RESUMEN

Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.


Asunto(s)
Ostreidae , Tradescantia , Animales , ADN Ribosómico/genética , Heterocromatina , Hibridación Fluorescente in Situ , Ostreidae/genética , Secuencias Repetitivas de Ácidos Nucleicos , Tradescantia/genética , Translocación Genética
2.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328613

RESUMEN

Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.


Asunto(s)
Agropyron , Agropyron/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Triticum/genética
3.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672992

RESUMEN

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200-250 nm laterally, ~500-700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4',6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


Asunto(s)
Cromosomas de las Plantas/genética , Hordeum/genética , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Cromosomas de las Plantas/química , Cromosomas de las Plantas/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Colorantes Fluorescentes/química , Hordeum/citología , Indoles/química , Metafase/genética , Reproducibilidad de los Resultados
4.
BMC Plant Biol ; 20(1): 280, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552738

RESUMEN

BACKGROUND: Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS: Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS: Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.


Asunto(s)
Cromosomas de las Plantas , Festuca/genética , Genoma de Planta/genética , Lolium/genética , Secuencias Repetitivas de Ácidos Nucleicos , Centrómero/genética
5.
J Exp Bot ; 71(20): 6262-6272, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32805034

RESUMEN

Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant's nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.


Asunto(s)
Núcleo Celular , Posicionamiento de Cromosoma , Núcleo Celular/genética , Centrómero/genética , Replicación del ADN , Genoma de Planta , Interfase
6.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114462

RESUMEN

Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de las Plantas/genética , Musa/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Diploidia , Evolución Molecular , Cariotipo , Musa/genética , Fitomejoramiento , Tetraploidía , Translocación Genética , Triploidía
7.
Cytogenet Genome Res ; 159(1): 48-53, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31610539

RESUMEN

Visualizing the spatiotemporal organization of the genome will improve our understanding of how chromatin structure and function are intertwined. Here, we describe a further development of the CRISPR/Cas9-based RNA-guided endonuclease-in situ labeling (RGEN-ISL) method. RGEN-ISL allowed the differentiation between vertebrate-type (TTAGGG)n and Arabidopsis-type (TTTAGGG)n telomere repeats. Using maize as an example, we established a combination of RGEN-ISL, immunostaining, and EdU labeling to visualize in situ specific repeats, histone marks, and DNA replication sites, respectively. The effects of the non-denaturing RGEN-ISL and standard denaturing FISH on the chromatin structure were compared using super-resolution microscopy. 3D structured illumination microscopy revealed that denaturation and acetic acid fixation impaired and flattened the chromatin. The broad range of adaptability of RGEN-ISL to different combinations of methods has the potential to advance the field of chromosome biology.


Asunto(s)
Amaryllidaceae/genética , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Replicación del ADN/genética , Zea mays/genética , Cromatina/metabolismo , Cromosomas/genética , ADN de Plantas/genética , Endonucleasas/genética , Hibridación Fluorescente in Situ/métodos , ARN Guía de Kinetoplastida/genética , Telómero/genética
8.
Int J Mol Sci ; 20(10)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137466

RESUMEN

Reference genomes of important cereals, including barley, emmer wheat and bread wheat, were released recently. Their comparison with genome size estimates obtained by flow cytometry indicated that the assemblies represent not more than 88-98% of the complete genome. This work is aimed at identifying the missing parts in two cereal genomes and proposing techniques to make the assemblies more complete. We focused on tandemly organised repetitive sequences, known to be underrepresented in genome assemblies generated from short-read sequence data. Our study found arrays of three tandem repeats with unit sizes of 1242 to 2726 bp present in the bread wheat reference genome generated from short reads. However, this and another wheat genome assembly employing long PacBio reads failed in integrating correctly the 2726-bp repeat in the pseudomolecule context. This suggests that tandem repeats of this size, frequently incorporated in unassigned scaffolds, may contribute to shrinking of pseudomolecules without reducing size of the entire assembly. We demonstrate how this missing information may be added to the pseudomolecules with the aid of nanopore sequencing of individual BAC clones and optical mapping. Using the latter technique, we identified and localised a 470-kb long array of 45S ribosomal DNA absent from the reference genome of barley.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta , Hordeum/genética , Secuencias Repetidas en Tándem , Triticum/genética
9.
Theor Appl Genet ; 131(10): 2213-2227, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30069594

RESUMEN

KEY MESSAGE: Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.


Asunto(s)
Agropyron/genética , Cromosomas de las Plantas , Cariotipo , Secuencias Repetidas en Tándem , Sondas de ADN , Diploidia , Hibridación Fluorescente in Situ , Translocación Genética , Triticum/genética
10.
Nature ; 488(7410): 213-7, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22801500

RESUMEN

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Musa/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Genotipo , Haploidia , Datos de Secuencia Molecular , Musa/clasificación , Filogenia
11.
Cytogenet Genome Res ; 151(2): 96-105, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28334706

RESUMEN

FISH is a useful method to identify individual chromosomes in a karyotype and to discover their structural changes accompanying genome evolution and speciation. DNA probes for FISH should be chromosome specific and/or exhibit specific patterns of distribution along each chromosome. Such probes are not available in many plants including meadow fescue (Festuca pratensis Huds.), an important forage grass species. In the present study, various DNA repeats identified in Illumina shotgun sequences specific to chromosome 4F of F. pratensis were used as probes for FISH to develop the molecular karyotype of meadow fescue and to reveal a long-range molecular organization of its chromosomes. Five tandem repeats produced specific patterns on individual chromosomes. Their use in combination with probes for rRNA genes enabled the establishment of the molecular karyotype of meadow fescue. Most of the mobile genetic elements were dispersed along all the chromosomes except for the DNA transposon CACTA, which was localized preferentially to telomeric and subtelomeric regions, and a putative LTR element, which was localized to (peri)centromeric regions. Cytogenetic mapping of the 5 tandem repeats in other accessions of meadow fescue showed a highly similar distribution and confirmed the versatility and robustness of these probes.


Asunto(s)
Festuca/genética , Cariotipificación/métodos , Secuencias Repetidas en Tándem , Cromosomas de las Plantas , ADN de Plantas , Hibridación Fluorescente in Situ , Cariotipo , Filogenia
12.
Plant J ; 84(4): 733-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26408103

RESUMEN

Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Brachypodium/genética , Mapeo Cromosómico , Evolución Molecular , Orden Génico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hordeum/genética , Hibridación Fluorescente in Situ , Oryza/genética , Poaceae/clasificación , Polimorfismo de Nucleótido Simple , Sorghum/genética , Triticum/genética
13.
Cytogenet Genome Res ; 148(4): 314-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27403741

RESUMEN

Fluorescence in situ hybridization (FISH) provides an efficient system for cytogenetic analysis of wild relatives of wheat for individual chromosome identification, elucidation of homoeologous relationships, and for monitoring alien gene transfers into wheat. This study is aimed at developing cytogenetic markers for chromosome identification of wheat and Aegilops geniculata (2n = 4x = 28, UgUgMgMg) using satellite DNAs obtained from flow-sorted chromosome 5Mg. FISH was performed to localize the satellite DNAs on chromosomes of wheat and selected Aegilops species. The FISH signals for satellite DNAs on chromosome 5Mg were generally associated with constitutive heterochromatin regions corresponding to C-band-positive chromatin including telomeric, pericentromeric, centromeric, and interstitial regions of all the 14 chromosome pairs of Ae. geniculata. Most satellite DNAs also generated FISH signals on wheat chromosomes and provided diagnostic chromosome arm-specific cytogenetic markers that significantly improved chromosome identification in wheat. The newly identified satellite DNA CL36 produced localized Mg genome chromosome-specific FISH signals in Ae. geniculata and in the M genome of the putative diploid donor species Ae. comosa subsp. subventricosa but not in Ae. comosa subsp. comosa, suggesting that the Mg genome of Ae. geniculata was probably derived from subsp. subventricosa.


Asunto(s)
ADN Satélite/genética , Poaceae/genética , Triticum/genética , Centrómero/genética , Bandeo Cromosómico , Cromosomas de las Plantas/genética , Marcadores Genéticos/genética , Hibridación Fluorescente in Situ , Telómero/genética
14.
Cytometry A ; 87(10): 958-66, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25929591

RESUMEN

Nuclear genome size is an inherited quantitative trait of eukaryotic organisms with both practical and biological consequences. A detailed analysis of major families is a promising approach to fully understand the biological meaning of the extensive variation in genome size in plants. Although Orchidaceae accounts for ∼10% of the angiosperm diversity, the knowledge of patterns and dynamics of their genome size is limited, in part due to difficulties in flow cytometric analyses. Cells in various somatic tissues of orchids undergo extensive endoreplication, either whole-genome or partial, and the G1-phase nuclei with 2C DNA amounts may be lacking, resulting in overestimated genome size values. Interpretation of DNA content histograms is particularly challenging in species with progressively partial endoreplication, in which the ratios between the positions of two neighboring DNA peaks are lower than two. In order to assess distributions of nuclear DNA amounts and identify tissue suitable for reliable estimation of nuclear DNA content, we analyzed six different tissue types in 48 orchid species belonging to all recognized subfamilies. Although traditionally used leaves may provide incorrect C-values, particularly in species with progressively partial endoreplication, young ovaries and pollinaria consistently yield 2C and 1C peaks of their G1-phase nuclei, respectively, and are, therefore, the most suitable parts for genome size studies in orchids. We also provide new DNA C-values for 22 orchid genera and 42 species. Adhering to the proposed methodology would allow for reliable genome size estimates in this largest plant family. Although our research was limited to orchids, the need to find a suitable tissue with dominant 2C peak of G1-phase nuclei applies to all endopolyploid species.


Asunto(s)
Citometría de Flujo , Genoma de Planta , Orchidaceae/genética , Núcleo Celular/genética , ADN de Plantas/genética , Endorreduplicación/genética , Tamaño del Genoma , Hojas de la Planta/genética
15.
Plant Physiol ; 163(3): 1323-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24096412

RESUMEN

The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.


Asunto(s)
Cromosomas de las Plantas/genética , Festuca/genética , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Southern Blotting , Mapeo Cromosómico , Orden Génico , Genoma de Planta/genética , Hordeum/genética , Hibridación Fluorescente in Situ , Cariotipificación/métodos , Datos de Secuencia Molecular , Oryza , Reproducibilidad de los Resultados , Sorghum/genética , Sintenía
16.
Front Plant Sci ; 15: 1358760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863533

RESUMEN

Chromatin organization and its interactions are essential for biological processes, such as DNA repair, transcription, and DNA replication. Detailed cytogenetics data on chromatin conformation, and the arrangement and mutual positioning of chromosome territories in interphase nuclei are still widely missing in plants. In this study, level of chromatin condensation in interphase nuclei of rice (Oryza sativa) and the distribution of chromosome territories (CTs) were analyzed. Super-resolution, stimulated emission depletion (STED) microscopy showed different levels of chromatin condensation in leaf and root interphase nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2 were conducted to investigate their spatial distribution in root and leaf nuclei. Six different configurations of chromosome territories, including their complete association, weak association, and complete separation, were observed in root meristematic nuclei, and four configurations were observed in leaf nuclei. The volume of CTs and frequency of their association varied between the tissue types. The frequency of association of CTs specific to chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA locus. Our data suggested that the arrangement of chromosomes in the nucleus is connected with the position and the size of the nucleolus.

17.
Nat Commun ; 15(1): 4279, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769297

RESUMEN

The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.


Asunto(s)
Chenopodiaceae , Proteínas de Plantas , Tolerancia a la Sal , Chenopodiaceae/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Vacuolas/metabolismo , Salinidad , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés Salino , Proteómica , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Transcriptoma
18.
Methods Mol Biol ; 2672: 445-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335493

RESUMEN

Recently developed bulked oligo-FISH is a highly versatile method, which is applicable in any plant species with an assembled genome sequence. This technique allows in situ identification of individual chromosomes, large chromosomal rearrangements, comparative karyotype analysis, or even the reconstruction of the three-dimensional organization of the genome. The method is based on the identification of thousands of short oligonucleotides, unique to specific genome regions, which are synthesized in parallel, fluorescently labeled and used as probes for FISH. In this chapter, we propose a detailed protocol for amplification and labeling of single-stranded oligo-based painting probes from so-called MYtags immortal libraries, the preparation of mitotic metaphase and meiotic pachytene chromosome spreads, and a protocol for the fluorescence in situ hybridization procedure using the synthetic oligo probes. The proposed protocols are demonstrated for banana (Musa spp.).


Asunto(s)
Pintura Cromosómica , Cromosomas de las Plantas , Pintura Cromosómica/métodos , Hibridación Fluorescente in Situ/métodos , Cromosomas de las Plantas/genética , Cariotipo , Cariotipificación
19.
Pathogens ; 12(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839561

RESUMEN

Vascular wilt caused by the ascomycete fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a major constraint of banana production around the world. The virulent race, namely Tropical Race 4, can infect all Cavendish-type banana plants and is now widespread across the globe, causing devastating losses to global banana production. In this study, we characterized Foc Subtropical Race 4 (STR4) resistance in a wild banana relative which, through estimated genome size and ancestry analysis, was confirmed to be Musa acuminata ssp. malaccensis. Using a self-derived F2 population segregating for STR4 resistance, quantitative trait loci sequencing (QTL-seq) was performed on bulks consisting of resistant and susceptible individuals. Changes in SNP index between the bulks revealed a major QTL located on the distal end of the long arm of chromosome 3. Multiple resistance genes are present in this region. Identification of chromosome regions conferring resistance to Foc can facilitate marker assisted selection in breeding programs and paves the way towards identifying genes underpinning resistance.

20.
Pathogens ; 12(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375510

RESUMEN

Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA