Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Formos Med Assoc ; 119(1 Pt 2): 268-275, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31155229

RESUMEN

BACKGROUND/PURPOSE: In recent years, 3D printing technology has flourished and applied to tissue engineering regeneration. The purpose of this study is to investigate the effects of gap width between struts (GWbS) of three-dimensional-printed polylactic acid scaffolds (3DP-PLASs) on neural differentiation of human dental pulp stem cells (hDPSCs). METHODS: Both the 3DP-PLASs with the GWbS of 150 µm and 200 µm were experimental groups and the 3DP-PLAS without microfilament struts was the control group. Properties of 3DP-PLASs were observed by water contact angles (WCA), atomic force microscope (AFM), and differential scanning calorimeter (DSC). The cell culture of hDPSCs on 3DP-PLASs was performed, and cytotoxicities were measured with Alamar Blue assay. The neural differentiation of hDPSCs on different 3DP-PLASs was compared after neural induction. Expressions of neural markers Nestin, MAP2, beta III tubulin, and GFAP were evaluated with immunocytochemical staining. RESULTS: Our results demonstrated no cytotoxicities among scaffolds, whereas they may differ in crystal sizes and directions resulting from different orders of cooling time, contact surface, and temperature distribution during the building process. In addition, hDPSCs could successfully adhere to 3DP-PLAS modified by alcohol or poly-l-Lysine and demonstrate morphological change and related protein performance. CONCLUSION: We conclude that 3DP-PLASs with 150 µm gaps can induce cellular orientations more easily than those with 200 µm gaps. In addition, 3DP-PLASs seem to improve cell adhesion after being coated with poly-l-lysine or soaked with alcohol.


Asunto(s)
Pulpa Dental/citología , Poliésteres/química , Impresión Tridimensional , Células Madre/citología , Andamios del Tejido/química , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Humanos , Neuronas/citología , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA