Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269675

RESUMEN

The myosin molecular motor interacts with actin filaments in an ATP-dependent manner to yield muscle contraction. Myosin heavy chain residue R369 is located within loop 4 at the actin-tropomyosin interface of myosin's upper 50 kDa subdomain. To probe the importance of R369, we introduced a histidine mutation of that residue into Drosophila myosin and implemented an integrative approach to determine effects at the biochemical, cellular, and whole organism levels. Substituting the similarly charged but bulkier histidine residue reduces maximal actin binding in vitro without affecting myosin ATPase activity. R369H mutants exhibit impaired flight ability that is dominant in heterozygotes and progressive with age in homozygotes. Indirect flight muscle ultrastructure is normal in mutant homozygotes, suggesting that assembly defects or structural deterioration of myofibrils are not causative of reduced flight. Jump ability is also reduced in homozygotes. In contrast to these skeletal muscle defects, R369H mutants show normal heart ultrastructure and function, suggesting that this residue is differentially sensitive to perturbation in different myosin isoforms or muscle types. Overall, our findings indicate that R369 is an actin binding residue that is critical for myosin function in skeletal muscles, and suggest that more severe perturbations at this residue may cause human myopathies through a similar mechanism.


Asunto(s)
Actinas , Enfermedades Musculares , Actinas/metabolismo , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histidina/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Miosinas/genética , Miosinas/metabolismo
2.
J Biol Chem ; 295(42): 14522-14535, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817166

RESUMEN

We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal ß-barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3-encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D ) in the absence of actin is completely reversed for each chimera compared with the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared with wild-type (WT) IFI, whereas for EMB-3b these values are increased compared with wild-type (WT) EMB. In the presence of actin, ADP affinity (KAD ) is unchanged for IFI-3a, compared with IFI, but ADP affinity for EMB-3b is increased, compared with EMB, and shifted toward IFI values. ATP-induced dissociation of acto-S1 (K1k+2 ) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicates that the exon 3-encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating actomyosin crossbridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Exones , Cinética , Simulación de Dinámica Molecular , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Purinas/química , Purinas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
3.
Biology (Basel) ; 11(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36009764

RESUMEN

The R249Q mutation in human ß-cardiac myosin results in hypertrophic cardiomyopathy. We previously showed that inserting this mutation into Drosophila melanogaster indirect flight muscle myosin yields mechanical and locomotory defects. Here, we use transgenic Drosophila mutants to demonstrate that residue R249 serves as a critical communication link within myosin that controls both ATPase activity and myofibril integrity. R249 is located on a ß-strand of the central transducer of myosin, and our molecular modeling shows that it interacts via a salt bridge with D262 on the adjacent ß-strand. We find that disrupting this interaction via R249Q, R249D or D262R mutations reduces basal and actin-activated ATPase activity, actin in vitro motility and flight muscle function. Further, the R249D mutation dramatically affects myofibril assembly, yielding abnormalities in sarcomere lengths, increased Z-line thickness and split myofibrils. These defects are exacerbated during aging. Re-establishing the ß-strand interaction via a R249D/D262R double mutation restores both basal ATPase activity and myofibril assembly, indicating that these properties are dependent upon transducer inter-strand communication. Thus, the transducer plays an important role in myosin function and myofibril architecture.

4.
Mol Biol Cell ; 32(18): 1690-1706, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34081531

RESUMEN

Dilated cardiomyopathy (DCM), a life-threatening disease characterized by pathological heart enlargement, can be caused by myosin mutations that reduce contractile function. To better define the mechanistic basis of this disease, we employed the powerful genetic and integrative approaches available in Drosophila melanogaster. To this end, we generated and analyzed the first fly model of human myosin-induced DCM. The model reproduces the S532P human ß-cardiac myosin heavy chain DCM mutation, which is located within an actin-binding region of the motor domain. In concordance with the mutation's location at the actomyosin interface, steady-state ATPase and muscle mechanics experiments revealed that the S532P mutation reduces the rates of actin-dependent ATPase activity and actin binding and increases the rate of actin detachment. The depressed function of this myosin form reduces the number of cross-bridges during active wing beating, the power output of indirect flight muscles, and flight ability. Further, S532P mutant hearts exhibit cardiac dilation that is mutant gene dose-dependent. Our study shows that Drosophila can faithfully model various aspects of human DCM phenotypes and suggests that impaired actomyosin interactions in S532P myosin induce contractile deficits that trigger the disease.


Asunto(s)
Actomiosina/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas de Drosophila/genética , Mutación , Cadenas Pesadas de Miosina/genética , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Miosinas Cardíacas/genética , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Vuelo Animal , Humanos , Locomoción , Músculo Esquelético/fisiopatología , Miofibrillas/patología , Cadenas Pesadas de Miosina/metabolismo
5.
Skelet Muscle ; 10(1): 24, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32799913

RESUMEN

BACKGROUND: Distal arthrogryposis (DA) is a group of autosomal dominant skeletal muscle diseases characterized by congenital contractures of distal limb joints. The most common cause of DA is a mutation of the embryonic myosin heavy chain gene, MYH3. Human phenotypes of DA are divided into the weakest form-DA1, a moderately severe form-DA2B (Sheldon-Hall Syndrome), and a severe DA disorder-DA2A (Freeman-Sheldon Syndrome). As models of DA1 and DA2B do not exist, their disease mechanisms are poorly understood. METHODS: We produced the first models of myosin-based DA1 (F437I) and DA2B (A234T) using transgenic Drosophila melanogaster and performed an integrative analysis of the effects of the mutations. Assessments included lifespan, locomotion, ultrastructural analysis, muscle mechanics, ATPase activity, in vitro motility, and protein modeling. RESULTS: We observed significant defects in DA1 and DA2B Drosophila flight and jump ability, as well as myofibril assembly and stability, with homozygotes displaying more severe phenotypes than heterozygotes. Notably, DA2B flies showed dramatically stronger phenotypic defects compared to DA1 flies, mirroring the human condition. Mechanical studies of indirect flight muscle fibers from DA1 heterozygotes revealed reduced power output along with increased stiffness and force production, compared to wild-type controls. Further, isolated DA1 myosin showed significantly reduced myosin ATPase activity and in vitro actin filament motility. These data in conjunction with our sinusoidal analysis of fibers suggest prolonged myosin binding to actin and a slowed step associated with Pi release and/or the power stroke. Our results are supported by molecular modeling studies, which indicate that the F437I and A234T mutations affect specific amino acid residue interactions within the myosin motor domain that may alter interaction with actin and nucleotide. CONCLUSIONS: The allele-specific ultrastructural and locomotory defects in our Drosophila DA1 and DA2B models are concordant with the differential severity of the human diseases. Further, the mechanical and biochemical defects engendered by the DA1 mutation reveal that power production, fiber stiffness, and nucleotide handling are aberrant in F437I muscle and myosin. The defects observed in our DA1 and DA2B Drosophila models provide insight into DA phenotypes in humans, suggesting that contractures arise from prolonged actomyosin interactions.


Asunto(s)
Actinas/metabolismo , Artrogriposis/genética , Proteínas de Drosophila/genética , Cadenas Pesadas de Miosina/genética , Fenotipo , Animales , Artrogriposis/metabolismo , Artrogriposis/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Locomoción , Longevidad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación Missense , Cadenas Pesadas de Miosina/metabolismo , Unión Proteica
6.
Mol Biol Cell ; 30(1): 30-41, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379605

RESUMEN

Using Drosophila melanogaster, we created the first animal models for myosin-based Freeman-Sheldon syndrome (FSS), a dominant form of distal arthrogryposis defined by congenital facial and distal skeletal muscle contractures. Electron microscopy of homozygous mutant indirect flight muscles showed normal (Y583S) or altered (T178I, R672C) myofibril assembly followed by progressive disruption of the myofilament lattice. In contrast, all alleles permitted normal myofibril assembly in the heterozygous state but caused myofibrillar disruption during aging. The severity of myofibril defects in heterozygotes correlated with the level of flight impairment. Thus our Drosophila models mimic the human condition in that FSS mutations are dominant and display varied degrees of phenotypic severity. Molecular modeling indicates that the mutations disrupt communication between the nucleotide-binding site of myosin and its lever arm that drives force production. Each mutant myosin showed reduced in vitro actin sliding velocity, with the two more severe alleles significantly decreasing the catalytic efficiency of actin-activated ATP hydrolysis. The observed reductions in actin motility and catalytic efficiency may serve as the mechanistic basis of the progressive myofibrillar disarray observed in the Drosophila models as well as the prolonged contractile activity responsible for skeletal muscle contractures in FSS patients.


Asunto(s)
Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Disostosis Craneofacial/fisiopatología , Drosophila melanogaster/metabolismo , Músculo Esquelético/fisiopatología , Miofibrillas/metabolismo , Miosinas/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Vuelo Animal , Heterocigoto , Homocigoto , Modelos Moleculares , Músculo Esquelético/ultraestructura , Mutación/genética , Miosinas/química , Dominios Proteicos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA