Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898417

RESUMEN

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Asunto(s)
Arabidopsis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbicidas , Senescencia de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Herbicidas/farmacología , Herbicidas/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Senescencia de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Transcriptoma , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Microb Ecol ; 80(1): 133-144, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31832698

RESUMEN

Miscanthus in Taiwan occupies a cline along altitude and adapts to diverse environments, e.g., habitats of high salinity and volcanoes. Rhizospheric and endophytic bacteria may help Miscanthus acclimate to those stresses. The relative contributions of rhizosphere vs. endosphere compartments to the adaptation remain unknown. Here, we used targeted metagenomics to compare the microbial communities in the rhizosphere and endosphere among ecotypes of M. sinensis that dwell habitats under different stresses. Proteobacteria and Actinobacteria predominated in the endosphere. Diverse phyla constituted the rhizosphere microbiome, including a core microbiome found consistently across habitats. In endosphere, the predominance of the bacteria colonizing from the surrounding soil suggests that soil recruitment must have subsequently determined the endophytic microbiome in Miscanthus roots. In endosphere, the bacterial diversity decreased with the altitude, likely corresponding to rising limitation to microorganisms according to the species-energy theory. Specific endophytes were associated with different environmental stresses, e.g., Pseudomonas spp. for alpine and Agrobacterium spp. for coastal habitats. This suggests Miscanthus actively recruits an endosphere microbiome from the rhizosphere it influences.


Asunto(s)
Bacterias/aislamiento & purificación , Ecotipo , Endófitos , Microbiota , Poaceae/microbiología , Rizosfera , Bacterias/clasificación , Biocombustibles , Ecosistema , Metagenómica
3.
BMC Genomics ; 20(1): 478, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31185914

RESUMEN

BACKGROUND: Salt pond restoration aims to recover the environmental damages that accumulated over the long history of salt production. Of the restoration strategies, phytoremediation that utilizes salt-tolerant plants and soil microorganisms to reduce the salt concentrations is believed to be environmentally-friendly. However, little is known about the change of bacterial community during salt pond restoration in the context of phytoremediation. In the present study, we used 16S metagenomics to compare seasonal changes of bacterial communities between the revegetated and barren salterns at Sicao, Taiwan. RESULTS: In both saltern types, Proteobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes were predominant at the phylum level. In the revegetated salterns, the soil microbiomes displayed high species diversities and underwent a stepwise transition across seasons. In the barren salterns, the soil microbiomes fluctuated greatly, indicating that mangroves tended to stabilize the soil microorganism communities over the succession. Bacteria in the order Halanaerobiaceae and archaea in the family Halobacteriaceae that were adapted to high salinity exclusively occurred in the barren salterns. Among the 441 persistent operational taxonomic units detected in the revegetated salterns, 387 (87.5%) were present as transient species in the barren salterns. Only 32 persistent bacteria were exclusively detected in the revegetated salterns. Possibly, salt-tolerant plants provided shelters for those new colonizers. CONCLUSIONS: The collective data indicate that revegetation tended to stabilize the microbiome across seasons and enriched the microbial diversity in the salterns, especially species of Planctomycetes and Acidobacteria.


Asunto(s)
Microbiota , Desarrollo de la Planta , Estanques/química , Estanques/microbiología , Sales (Química) , Estaciones del Año , Microbiología del Suelo , Ecosistema , Restauración y Remediación Ambiental , Redes y Vías Metabólicas
4.
Ann Bot ; 124(4): 591-604, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30596965

RESUMEN

BACKGROUND AND AIMS: Germplasm with diverse, agronomically relevant traits forms the foundation of a successful plant breeding programme. Since 1993, the United Nations has been advocating the implementation of the Convention on Biological Diversity (CBD) and the subsequent 2002 Bonn Guidelines as international best practice on germplasm collection and use. In 2006, a European team made an expedition to Asia to collect wild germplasm of Miscanthus, a C4 perennial rhizomatous grass, for breeding an environmentally adaptable, resilient and high-yielding bioenergy crop. We outline general aspects of germplasm collection, conservation, breeding and biomass production evaluation while following the CBD's guidelines, respecting biodiversity and conservation needs, and the ethical use of genetic resources. METHODS: Effective protocols, quarantine, methods for collecting seed and rhizomes, and a genebank for conservation were established. Versatile informatics and database architecture were used to assist in selection, flowering synchronization, crossing, evaluation, phenotyping and data integration. Approaches were formulated to comply with the CBD guidelines. KEY RESULTS: A total of 303 accessions of M. sinensis, M. sacchariflorus and M. floridulus were collected from 158 geographically and environmentally diverse locations. These species were shown to accumulate different amounts of aerial biomass due to combinations of stem count, height and thickness. Progeny from one interspecies cross accumulated more biomass in early trials and has shown double the yield performance in years 3-4 compared with the existing commercial cultivar M. × giganteus. An example of an F1 hybrid has already demonstrated the long-term potential of exploiting this collection for a breeding programme. CONCLUSIONS: By conforming to the CBD principles, the authors' international collaboration provides a practical example of implementing the CBD. The collection widened the genetic diversity of Miscanthus available to allow for breeding of novel hybrids that exhibit more diverse traits to increase yield and resilience for growth on marginal land and in climate-challenged environments.


Asunto(s)
Biodiversidad , Poaceae , Asia , Europa (Continente) , Naciones Unidas
5.
Plant J ; 80(5): 834-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25237766

RESUMEN

Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.


Asunto(s)
Flujo Génico , Filogenia , Poaceae/genética , China , Ecotipo , Especiación Genética , Variación Genética , Genética de Población , Desequilibrio de Ligamiento , Modelos Genéticos , Taiwán
6.
Mitochondrial DNA B Resour ; 9(4): 470-474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591054

RESUMEN

Angelica hirsutiflora Liu et al.1961, is a perennial herb in the Apiaceae family that is endemic to Taiwan. In this study, the complete circular chloroplast genome of A. hirsutiflora was reconstructed and annotated using Illumina sequencing. The size of the chloroplast genome is 154,266 bp, consisting of two inverted repeats (IRs, 25,075 bp) separated by a large single-copy region (LSC, 86,569 bp) and a small single-copy region (SSC, 17,547 bp). The GC content of the chloroplast genome is 37.6%. There are 114 different genes in the chloroplast genome of A. hirsutiflora, including 80 protein-coding genes, 30 tRNA genes and four rRNA genes. A maximum-likelihood phylogenetic analysis showed that A. hirsutiflora forms a distinct clade, and separated from other species within the genus Angelica. This study provided insights into the evolutionary relationships among different species of Angelica.

7.
Bot Stud ; 65(1): 3, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252347

RESUMEN

BACKGROUND: Angelica L. sensu lato is a taxonomically complex genus, and many studies have utilized morphological and molecular features to resolve its classification issues. In Taiwan, there are six taxa within Angelica, and their taxonomic treatments have been a subject of controversy. In this study, we conducted a comprehensive analysis incorporating morphological and molecular (cpDNA and nrDNA) characteristics to revise the taxonomic treatments of Angelica in Taiwan. RESULTS: As a result of our research, we have revised the classification between A. dahurica var. formosana and A. pubescens and merged two varieties of A. morrisonicola into a single taxon. A new taxon, A. aliensis, has been identified and found to share a close relationship with A. tarokoensis. Based on the morphological and molecular characteristics data, it has been determined that the former three taxa should be grouped into the Eurasian Angelica clade, while the remaining four taxa should belong to the littoral Angelica clade. Furthermore, Angelica species in Taiwan distributed at higher altitudes displayed higher genetic diversity, implying that the central mountain range of Taiwan serves as a significant reservoir of plant biodiversity. Genetic drift, such as bottlenecks, has been identified as a potential factor leading to the fixation or reduction of genetic diversity of populations in most Angelica species. We provide key to taxa, synopsis, phenology, and distribution for each taxon of Taiwan. CONCLUSIONS: Our comprehensive analysis of morphological and molecular features has shed light on the taxonomic complexities within Angelica in Taiwan, resolving taxonomic issues and providing valuable insights into the phylogenetic relationships of Angelica in Taiwan.

8.
Plant J ; 70(5): 769-82, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22268451

RESUMEN

Asian rice, Oryza sativa, consists of two major subspecies, indica and japonica, which are physiologically differentiated and adapted to different latitudes. Genes for photoperiod sensitivity are likely targets of selection along latitude. We examined the footprints of natural and artificial selections for four major genes of the photoperiod pathway, namely PHYTOCHROME B (PhyB), HEADING DATE 1 (Hd1), HEADING DATE 3a (Hd3a), and EARLY HEADING DATE 1 (Ehd1), by investigation of the patterns of nucleotide polymorphisms in cultivated and wild rice. Geographical subdivision between tropical and subtropical O. rufipogon was found for all of the photoperiod genes in plants divided by the Tropic of Cancer (TOC). All of these genes, except for PhyB, were characterized by the existence of clades that split a long time ago and that corresponded to latitudinal subdivisions, and revealed a likely diversifying selection. Ssp. indica showed close affinity to tropical O. rufipogon for all genes, while ssp. japonica, which has a much wider range of distribution, displayed complex patterns of differentiation from O. rufipogon, which reflected various agricultural needs in relation to crop yield. In japonica, all genes, except Hd3a, were genetically differentiated at the TOC, while geographical subdivision occurred at 31°N in Hd3a, probably the result of varying photoperiods. Many other features of the photoperiod genes revealed domestication signatures, which included high linkage disequilibrium (LD) within genes, the occurrence of frequent and recurrent non-functional Hd1 mutants in cultivated rice, crossovers between subtropical and tropical alleles of Hd1, and significant LD between Hd1 and Hd3a in japonica and indica.


Asunto(s)
Genes de Plantas , Oryza/genética , Fotoperiodo , Selección Genética , Alelos , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Intercambio Genético , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Variación Genética , Geografía , Desequilibrio de Ligamiento , Oryza/metabolismo , Oryza/fisiología , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 14(10): 20414-26, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24129176

RESUMEN

Poison ivy, Toxicodendron radicans, and poison oaks, T. diversilobum and T. pubescens, are perennial woody species of the Anacardiaceae and are poisonous, containing strong allergens named urushiols that cause allergic contact dermatitis. Poison ivy is a species distributed from North America to East Asia, while T. diversilobum and T. pubescens are distributed in western and eastern North America, respectively. Phylogreography and population structure of these species remain unclear. Here, we developed microsatellite markers, via constructing a magnetic enriched microsatellite library, from poison ivy. We designed 51 primer pairs, 42 of which successfully yielded products that were subsequently tested for polymorphism in poison oak, and three subspecies of poison ivy. Among the 42 loci, 38 are polymorphic, while 4 are monomorphic. The number of alleles and the expected heterozygosity ranged from 1 to 12 and from 0.10 to 0.87, respectively, in poison ivy, while varied from 2 to 8 and, from 0.26 to 0.83, respectively in poison oak. Genetic analysis revealed distinct differentiation between poison ivy and poison oak, whereas slight genetic differentiation was detected among three subspecies of poison ivy. These highly polymorphic microsatellite fingerprints enable biologists to explore the population genetics, phylogeography, and speciation in Toxicodendron.


Asunto(s)
Anacardiaceae/genética , Repeticiones de Microsatélite/genética , Toxicodendron/genética , Alelos , Genotipo , Polimorfismo Genético/genética
10.
Bot Stud ; 64(1): 14, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269434

RESUMEN

BACKGROUND: While polyploids are common in plants, the evolutionary history and natural dynamics of most polyploid groups are still unclear. Owing to plentiful earlier systematic studies, Ludwigia sect. Isnardia (comprising 22 wetland taxa) is an ideal allopolyploid complex to investigate polyploid evolution and natural dynamics within and among taxa. With a considerable sampling, we concentrated on revisiting earlier phylogenies of Isnardia, reevaluating the earlier estimated age of the most recent common ancestor (TMRCA), exploring the correlation between infraspecific genetic diversity and ploidy levels, and inspecting interspecific gene flows among taxa. RESULTS: Phylogenetic trees and network concurred with earlier phylogenies and hypothesized genomes by incorporating 192 atpB-rbcL and ITS sequences representing 91% of Isnardia taxa. Moreover, we detected three multi-origin taxa. Our findings on L. repens and L. sphaerocarpa were consistent with earlier studies; L. arcuata was reported as a multi-origin taxon here, and an additional evolutionary scenario of L. sphaerocarpa was uncovered, both for the first time. Furthermore, estimated Isnardia TMRCA ages based on our data (5.9 or 8.9 million years ago) are in accordance with earlier estimates, although younger than fossil dates (Middle Miocene). Surprisingly, infraspecific genetic variations of Isnardia taxa did not increase with ploidy levels as anticipated from many other polyploid groups. In addition, the exuberant, low, and asymmetrical gene flows among Isnardia taxa indicated that the reproductive barriers may be weakened owing to allopolyploidization, which has rarely been reported. CONCLUSIONS: The present research gives new perceptions of the reticulate evolution and dynamic nature of Isnardia and points to gaps in current knowledge about allopolyploid evolution.

11.
Biosci Microbiota Food Health ; 42(2): 104-113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37016686

RESUMEN

Fermented soy sauce consists of microorganisms that exert beneficial effects. However, the microbial community dynamics during the fermentation course is poorly characterized. Soy sauce production is classified into the stages of mash fermentation with koji (S0), brine addition (S1), microbial transformation (S2), flavor creation (S3), and fermentation completion (S4). In this study, microbial succession was investigated across stages at different temperatures using metagenomics analyses. During mash fermentation, Aspergillus dominated the fungal microbiota in all stages, while the bacterial composition was dominated by Bacillus at room temperature and by a diverse composition of enriched lactic acid bacteria (LAB) at a controlled temperature. Compared with a stable fungal composition, bacterial dynamics were mostly attributable to fluctuations of LAB, which break down carbohydrates into lactic acid. After adding brine, increased levels of Enterococcus and decreased levels of Lactococcus from S1 to S4 may reflect differences in salinity tolerance. Staphylococcus, as a fermentation starter at S0, stayed predominant throughout fermentation and hydrolyzed soybean proteins. Meanwhile, Rhizopus and Penicillium may improve the flavor. The acidification of soy sauce was likely attributable to production of organic acids by Bacillus and LAB under room temperature and controlled temperature conditions, respectively. Metagenomic analysis revealed that microbial succession was associated with the fermentation efficiency and flavor enhancement. Controlled temperature nurture more LAB than uncontrolled temperatures and may ensure the production of lactic acid for the development of soy sauce flavor.

12.
Am J Bot ; 99(11): e428-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23108470

RESUMEN

PREMISE OF THE STUDY: Microsatellite loci were developed from Imperata cylindrica, a traditional medicinal herb in Asia and among the top 10 worst invasive weeds in the world, to aid in the identification of the limits of asexual clonal individuals. METHODS AND RESULTS: A total of 21 microsatellite markers, including 18 polymorphic and three monomorphic loci, were developed from I. cylindrica using a magnetic bead enrichment protocol. The primers amplified dinucleotide, trinucleotide, and complex repeats. The number of alleles ranged from one to 19 per locus, with an observed heterozygosity ranging from 0.09 to 1.00. Several loci deviated significantly from the within-population Hardy-Weinberg equilibrium as a result of asexual clonal reproduction. CONCLUSIONS: These polymorphic markers should be useful tools in further studies on the identification of the range of clonal reproduction units and the selection and classification of the medicinal cultivar.


Asunto(s)
Repeticiones de Microsatélite/genética , Malezas/genética , Plantas Medicinales/genética , Poaceae/genética , Secuencia de Bases , ADN de Plantas/química , ADN de Plantas/genética , Variación Genética , Genotipo , Geografía , Japón , Desequilibrio de Ligamiento , Datos de Secuencia Molecular , Polimorfismo Genético , Análisis de Secuencia de ADN , Taiwán
13.
Am J Bot ; 99(4): e157-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22447985

RESUMEN

PREMISE OF THE STUDY: Fifteen microsatellite loci were developed in an endangered species, Amentotaxus formosana, and were tested in an additional three species, A. argotaenia, A. yunnanensis, and A. poilanei, to evaluate the population structure for conservation efforts and reconstruct the phylogeographic patterns of this ancient lineage. METHODS AND RESULTS: Polymorphic primer sets were developed from A. formosana; the number of alleles ranged from two to 10, with an observed heterozygosity ranging from 0 to 0.60. All of the loci were found to be interspecifically amplifiable. CONCLUSIONS: These polymorphic and transferable loci will be potentially useful for future studies that will focus on identifying distinct genetic units within species and establishing the phylogeographic patterns and the process of speciation among closely related species.


Asunto(s)
ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Sitios Genéticos/genética , Repeticiones de Microsatélite/genética , Taxaceae/genética , Datos de Secuencia Molecular , Polimorfismo Genético
14.
Am J Bot ; 99(1): e24-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22203648

RESUMEN

PREMISE OF THE STUDY: Transferable polymorphic microsatellite loci for four skullcaps, Scutellaria indica, S. taiwanensis, S. austrotaiwanensis, and S. playfairii, were developed for future studies of the mating system and population structure of these species. Interspecific amplification was also tested in various Scutellaria species. METHODS AND RESULTS: Twelve novel polymorphic microsatellite loci were isolated from four S. taiwanensis specimens, and seven are interspecifically transferable. Microsatellite loci developed from S. austrotaiwanensis in a previous study were also analyzed in the other three species, and 12 loci were found to be transferable. Allele numbers of the total 24 loci for S. indica, S. taiwanensis, S. playfairii, and S. austrotaiwanensis are two to four, two, two to five, and two to three, respectively, with an expected heterozygosity ranging from 0.114-0.661, 0.062-0.499, 0.280-0.730, and 0.268-0.662, respectively. The interspecies transferability of these 24 loci was further tested in another 10 Scutellaria species, including three species native to Taiwan. Seventeen loci were found to be interspecifically amplifiable, especially among the Taiwan native species. CONCLUSIONS: These highly polymorphic and transferable loci will be useful for future studies of the mating system of closely related Scutellaria species.


Asunto(s)
Repeticiones de Microsatélite/genética , Polimorfismo Genético , Scutellaria/genética , Alelos , Secuencia de Bases , Cartilla de ADN/genética , ADN de Plantas/genética , Sitios Genéticos , Marcadores Genéticos , Variación Genética , Heterocigoto , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Scutellaria/clasificación , Análisis de Secuencia de ADN , Taiwán
15.
Mitochondrial DNA B Resour ; 7(8): 1507-1509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034531

RESUMEN

Bupleurum kaoi Liu, Chao, and Chuang is an endemic and endangered herb in Taiwan. In this study, the complete circular chloroplast genome of B. kaoi was reconstructed and annotated using Illumina sequencing. The genome size of B. kaoi is 155,938 bp, including a pair of inverted repeat regions (IRs: 26308 bp), separated by a large single-copy (LSC) region of 85,784 bp and a small single-copy (SSC) region of 17,538 bp. The GC content of the chloroplast genome is 37.6%. There are 113 different genes in the chloroplast genome of B. kaoi, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. A maximum-likelihood phylogenetic analysis showed that Bupleurum species is the monophyletic group, and B. kaoi belongs to subgenus Bupleurum and is closely related to B. scorzonerifolium.

16.
BMC Evol Biol ; 11: 108, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21501530

RESUMEN

BACKGROUND: A complex of incipient species with different degrees of morphological or ecological differentiation provides an ideal model for studying species divergence. We examined the phylogeography and the evolutionary history of the Rhododendron pseudochrysanthum s. l. RESULTS: Systematic inconsistency was detected between gene genealogies of the cpDNA and nrDNA. Rooted at R. hyperythrum and R. formosana, both trees lacked reciprocal monophyly for all members of the complex. For R. pseudochrysanthum s.l., the spatial distribution of the cpDNA had a noteworthy pattern showing high genetic differentiation (FST=0.56-0.72) between populations in the Yushan Mountain Range and populations of the other mountain ranges. CONCLUSION: Both incomplete lineage sorting and interspecific hybridization/introgression may have contributed to the lack of monophyly among R. hyperythrum, R. formosana and R. pseudochrysanthum s.l. Independent colonizations, plus low capabilities of seed dispersal in current environments, may have resulted in the genetic differentiation between populations of different mountain ranges. At the population level, the populations of Central, and Sheishan Mountains may have undergone postglacial demographic expansion, while populations of the Yushan Mountain Range are likely to have remained stable ever since the colonization. In contrast, the single population of the Alishan Mountain Range with a fixed cpDNA haplotype may have experienced bottleneck/founder's events.


Asunto(s)
ADN de Cloroplastos/genética , Especiación Genética , Rhododendron/genética , Evolución Biológica , Demografía , Filogeografía , Taiwán
17.
Am J Bot ; 98(8): e201-3, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21795730

RESUMEN

PREMISE OF THE STUDY: Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. METHODS AND RESULTS: Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. CONCLUSIONS: These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.


Asunto(s)
ADN de Plantas/análisis , Perfilación de la Expresión Génica/métodos , Repeticiones de Microsatélite , Poaceae/genética , Alelos , Biocombustibles , Cruzamiento/métodos , Cartilla de ADN/genética , ADN de Plantas/genética , Frecuencia de los Genes , Genes de Plantas , Sitios Genéticos , Heterocigoto , Polimorfismo Genético , Especificidad de la Especie , Transcriptoma
18.
Sci Rep ; 11(1): 1152, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441744

RESUMEN

Genus Rubus represents the second largest genus of the family Rosaceae in Taiwan, with 41 currently recognized species across three subgenera (Chamaebatus, Idaoeobatus, and Malochobatus). Despite previous morphological and cytological studies, little is known regarding the overall phylogenetic relationships among the Rubus species in Taiwan, and their relationships to congeneric species in continental China. We characterized eight complete plastomes of Taiwan endemic Rubus species: subg. Idaeobatus (R. glandulosopunctatus, R. incanus, R. parviaraliifolius, R rubroangustifolius, R. taitoensis, and R. taiwanicolus) and subg. Malachobatus (R. kawakamii and R. laciniastostipulatus) to determine their phylogenetic relationships. The plastomes were highly conserved and the size of the complete plastome sequences ranged from 155,566 to 156,236 bp. The overall GC content ranged from 37.0 to 37.3%. The frequency of codon usage showed similar patterns among species, and 29 of the 73 common protein-coding genes were positively selected. The comparative phylogenomic analysis identified four highly variable intergenic regions (rps16/trnQ, petA/psbJ, rpl32/trnL-UAG, and trnT-UGU/trnL-UAA). Phylogenetic analysis of 31 representative complete plastomes within the family Rosaceae revealed three major lineages within Rubus in Taiwan. However, overall phylogenetic relationships among endemic species require broader taxon sampling to gain new insights into infrageneric relationships and their plastome evolution.


Asunto(s)
Rubus/genética , Evolución Molecular , Genoma de Planta , Filogenia , Plastidios/genética , Taiwán
19.
New Phytol ; 188(2): 488-500, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20673288

RESUMEN

• Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. • Flow cytometry analyses detected ploidy polymorphisms of 2× and 4× in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. • Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. • High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.


Asunto(s)
Arabidopsis/genética , Cruzamientos Genéticos , Flujo Génico/genética , Sitios Genéticos/genética , Variación Genética , Genoma de Planta/genética , Sustitución de Aminoácidos/genética , ADN de Plantas/análisis , Citometría de Flujo , Genes de Plantas/genética , Modelos Genéticos , Filogenia , Ploidias , Especificidad de la Especie
20.
BMC Evol Biol ; 9: 161, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19589178

RESUMEN

BACKGROUND: This study addresses the apportionment of genetic diversity between Cycas revoluta and C. taitungensis, species that constitute the section Asiorientales and represent a unique, basal lineage of the Laurasian genus Cycas. Fossil evidence indicates divergence of the section from the rest of Cycas at least 30 million years ago. Geographically, C. taitungensis is limited to Taiwan whereas C. revoluta is found in the Ryukyu Archipelago and on mainland China. RESULTS: The phylogenies of ribosomal ITS region of mtDNA and the intergenic spacer between atpB and rbcL genes of cpDNA were reconstructed. Phylogenetic analyses revealed paraphyly of both loci in the two species and also in the section Asiorientales. The lack of reciprocal monophyly between these long isolated sections is likely due to persistent shared ancestral polymorphisms. Molecular dating estimated that mt- and cp DNA lineages coalesced to the most recent common ancestors (TMRCA) about 327 (mt) and 204 MYA (cp), corresponding with the divergence of cycad sections in the Mesozoic. CONCLUSION: Fates of newly derived mutations of cycads follow Klopfstein et al.'s surfing model where the majority of new mutations do not spread geographically and remain at low frequencies or are eventually lost by genetic drift. Only successful 'surfing mutations' reach very high frequencies and occupy a large portion of a species range. These mutations exist as dominant cytotypes across populations and species. Geographical subdivision is lacking in both species, even though recurrent gene flow by both pollen and seed is severely limited. In total, the contrasting levels between historical and ongoing gene flow, large population sizes, a long lifespan, and slow mutation rates in both organelle DNAs have all likely contributed to the unusually long duration of paraphyly in cycads.


Asunto(s)
Cycas/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , Evolución Molecular , Polimorfismo Genético , China , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Genes de Plantas , Genética de Población , Geografía , Haplotipos , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA